您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考专题一-旋转问题题型方法归纳
..旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。一、直线的旋转1、(省市)如图,已知A、B是线段MN上的两点,4MN,1MA,1MB.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设xAB.(1)求x的取值围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?2、()如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.CABNM(第1题)..3、(市)在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=43,AE=1,在①的条件下,设CP1=x,S11PFC=y,求y与x之间的函数关系式,并写出自变量x的取值围.4、(大兴安岭)已知:在ABC中,ACBC,动点D绕ABC的顶点A逆时针旋转,且BCAD,连结DC.过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N.(1)如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H,连结HE、HF,根据三角形中位线定理和平行线的性质,可得结论BNEAMF(不需证明).(2)当点D旋转到图2或图3中的位置时,AMF与BNE有何数量关系?请分别写出猜想,并任选一种情况证明.图2图3图1HMFEABCDMNFEABCDMNFEABCD(N)..ADCBPMQ60°二、角的旋转5、()1.如图1,圆心接ABC△中,ABBCCA,OD、OE为O⊙的半径,ODBC于点F,OEAC于点G,求证:阴影部分四边形OFCG的面积是ABC△的面积的13.2.如图2,若DOE保持120°角度不变,求证:当DOE绕着O点旋转时,由两条半径和ABC△的两条边围成的图形(图中阴影部分)面积始终是ABC△的面积的13.6.(襄樊市)如图,在梯形ABCD中,24ADBCADBC∥,,,点M是AD的中点,MBC△是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且60MPQ∠保持不变.设PCxMQy,,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断PQC△的形状,并说明理由...7、(市)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.三、三角形的旋转8、(市)如图,将Rt△ABC(其中∠B=340,∠C=900)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于()6题图yxDBCAEEO..BACABA.560B.680C.1240D.18009、()如图,已知ACB△与DFE△是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点BCFD、、、在同一条直线上,且点C与点F重合,将图(1)中的ACB△绕点C顺时针方向旋转到图(2)的位置,点E在AB边上,AC交DE于点G,则线段FG的长为cm10、()如图9,ABC△的顶点坐标分别为(36)(13)AB,,,,(42)C,.若将ABC△绕C点顺时针旋转90,得到ABC△,则点A的对应点A的坐标为.11、(市)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,1Ð与2Ð的和总是保持不变,那么1Ð与2Ð的和是_______度.12、(市)如图,三角板ABC中,90ACB,30B,6BC.三角板绕直角顶点C逆时针旋转,当点A的对应点'A落在AB边的起始位置上时即停止转动,则B点转过的路径长为.1234567891234567OABCyx图9C(F)D图(2)340B1CBAC12130°ACBCA30°(12题)..13、(凉山州)将ABC△绕点B逆时针旋转到ABC△使ABC、、在同一直线上,若90BCA°,304cmBACAB°,,则图中阴影部分面积为cm2.14、(市)如图6,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到DA1B2C2,请依次作出△A1B1C1和△A1B2C2。15、(达州)如图7,在△ABC中,AB=2BC,点D、点E分别为AB、AC的中点,连结DE,将△ADE绕点E旋转180得到△CFE.试判断四边形BCFD的形状,并说明理由.16、(襄樊市)如图所示,在RtABC△中,90ABC∠.将RtABC△绕点C顺时针方向旋转60得到DEC△,点E在AC上,再将RtABC△沿着AB所在直线翻转180得到ABF△.连接AD.(1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形?为什么?17、(株洲市)如图,在RtOAB中,90OAB,6OAAB,将OAB绕点O沿逆时针方向旋转90得到11OAB.(1)线段1OA的长是,1AOB的度数是;(2)连结1AA,求证:四边形11OAAB是平行四边形;ADFCEGBABC..B1AOBA1ADGECB(3)求四边形11OAAB的面积.18、(市)如图,直角梯形ABCD中,BCAD∥,90BCD°,且2tan2CDADABC,,过点D作ABDE∥,交BCD的平分线于点E,连接BE.(1)求证:BCCD;(2)将BCE△绕点C,顺时针旋转90°得到DCG△,连接EG..求证:CD垂直平分EG.(3)延长BE交CD于点P.求证:P是CD的中点.即BCCD.19、(省)在ABC△中,2120ABBCABC,°,将ABC△绕点B顺时针旋转角(0°90)°得ABCAB111△,交AC于点E,11AC分别交ACBC、于DF、两点.1.如图1,观察并猜想,在旋转过程中,线段1EA与FC有怎样的数量关系?并证明你的结论;2.如图2,当30°时,试判断四边形1BCDA的形状,并说明理由;3.在(2)的情况下,求ED的长...20、()已知RtABC△中,90ACBCCD,∠,为AB边的中点,90EDF°,EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当EDF绕D点旋转到DEAC于E时(如图1),易证12DEFCEFABCSSS△△△.当EDF绕D点旋转到DEAC和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEFS△、CEFS△、ABCS△又有怎样的数量关系?请写出你的猜想,不需证明.21、(市)如图9,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.(1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;ADBECF1A1CADBECF1A1CAECFBD图1图3ADFECBADBCE图2F..(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.22、(东营)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)FBADCEG图①FBADCEG图②DFBACE图③图9图10图11图8..EFMNGOBAxy图(9)-2QDOBAxyCy=kx+1图(9)-123、(庆阳)如图14,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积).24、(广西)如图(9)-1,抛物线23yaxaxb经过A(1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线)0(1kkxy将四边形ABCD面积二等分,求k的值;(3)如图(9)-2,过点E(1,1)作EF⊥x轴于点F,将△AEF绕平面某点旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG⊥x轴于点G,若线段MG︰AG=1︰2,求点M,N的坐标.图22..四、四边形的旋转25、(市)如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.26、(呼和浩特)如图所示,正方形ABCD的边CD在正方形ECGF的边CE上,连接BEDG,.(1)求证:BEDG.(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由.27、(市)在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线yx上时停止旋转,旋转过程中,AB边交直线yx于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.28、(市)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(80),,直线ADCBCDBEOABCMNyxxyEFGDABC..BC经过点(86)B,,(06)C,
本文标题:中考专题一-旋转问题题型方法归纳
链接地址:https://www.777doc.com/doc-6550590 .html