您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 第十五章污水的厌氧生物处理
水污染控制工程第十五章污水的厌氧生物处理厌氧生物处理——概述厌氧污水污泥处理技术的发展1860年法国的Muras将简易沉淀池改为污泥处理构筑物;1895年英国Cameron进一步改进为腐化池;1903年英国的Travis首先建成了双层沉淀池;1906年德国的Imhoff发明Imhoff双层沉淀池;1912年英国的伯明翰市建了第一个消化池;1920年英国Watson建成最早二级消化池,同时利用了沼气;1925-1926年在德国、美国相继建成较标准的消化池。厌氧生物处理法或厌氧消化法:在断绝与空气接触的条件下,依赖兼性厌氧菌和专性厌氧菌的生物化学作用,对有机物进行生物降解的过程。厌氧生物处理法的处理对象是:高浓度有机工业废水、城镇污水的污泥、动植物残体及粪便等。第一节厌氧法的基本原理若有机物的降解产物主要是有机酸,则此过程称为不完全的厌氧消化,简称为酸发酵或酸化。若进一步将有机酸转化为以甲烷为主的生物气,此全过程称为完全的厌氧消化,简称为甲烷发酵或沼气发酵。厌氧生物处理法的处理对象是:高浓度有机工业废水、城镇污水的污泥、动植物残体等。厌氧生物处理的方法和基本功能有二:(1)酸发酵的目的是为进一步进行生物处理提供生物降解的基质;(2)甲烷发酵的目的是进一步降解有机物和生产气体燃料。完全的厌氧生物处理工艺因兼有降解有机物和生产气体燃料的双重功能,因而得到了广泛的发展和应用。I甲酸类甲醇产甲胺通过不同废水或污泥蛋白质氨基酸物乙酸等途径转化中不溶态大多糖C6H12O6为CH4、分子有机物脂类甘油II丙酸CO2等脂肪酸类丁酸CO2、[H]产乳酸和乙酸物乙醇等水解阶段酸化阶段气化阶段酸化I酸化II不完全厌氧消化(酸发酵)发酵菌发酵菌甲烷菌产氢产乙酸菌图15-1厌氧发酵的几个阶段厌氧法的基本原理1、水解酸化阶段(产酸或酸化细菌)厌氧法的基本原理2、产气阶段(甲烷细菌)乙酸化阶段甲烷化阶段厌氧法的影响因素甲烷发酵阶段是厌氧消化反应的控制阶段,因此厌氧反应的各项影响因素也以对甲烷菌的影响因素为准。一、温度条件温度是影响微生物生存及生物化学反应最重要的因素之一。各类微生物适宜的温度范围是不同的,一般认为,产甲烷菌的温度范围为5~60℃,在35℃(中温消化,20d)和53℃(高温消化,10天)上下可以分别获得较高的消化效率,温度为40~45℃时,氧消化效率较低。温度的急剧变化和上下波动不利于厌氧消化作用。短时间内温度升降5℃,沼气产量明显下降,波动的幅度过大时,甚至停止产气。温度的波动,不仅影响沼气产量,还影响沼气中的甲烷含量,此其高温消化对温度变化更为敏感。二、pH值pH值条件失常首先使产氢产乙酸作用和产甲烷作用受抑制,使产酸过程所形成的有机酸不能被正常地代谢降解,从而使整个消化过程的各阶段间的协调平衡丧失。若pH值降到5以下,对产甲烷菌毒性较大,同时产酸作用本身也受抑制,整个厌氧消化过程即停滞。即使pH值恢复到7.0左右,厌氧装置的处理能力仍不易恢复;而在稍高pH值时,只要恢复中性,产甲烷菌能较快地恢复活性。所以厌氧装置适宜在中性或稍偏碱性的状态下运行。最适pH值为7.0~7.2,pH6.6~7.4较为适宜。三、氧化还原电位无氧环境是严格厌氧的产甲烷菌繁殖的最基本条件之一,产甲烷菌对氧和氧化剂非常敏感。产甲烷菌初始繁殖的环境条件是氧化还原电位不能高于-330mV。在厌氧消化全过程中,不产甲烷阶段可在兼氧条件下完成,氧化还原电位为+0.1~-0.1V,而在产甲烷阶段,氧化还原电位须控制为-0.3~-0.35V(中温消化)与-0.56~0.6V(高温消化),常温消化与中温相近。产甲烷阶段氧化还原电位的临界值为-0.2V。四、有机负荷在一定范围内,随着有机负荷的提高,产气率趋向下降,而消化器的容积产气量则增多。若有机负荷过高,则产酸率将大于用酸(产甲烷)率,挥发酸将累积而使pH值下降、破坏产甲烷阶段的正常进行,严重时产甲烷作用停顿,系统失败,并难以调整复苏。此外,有机负荷过高,则过高的水力负荷还会使消化系统中污泥的流失速率大于增长速率而降低消化效率。若有机负荷过低,物料产气率或有机物去除率虽可提高,但容积产气率降低,反应器容积将增大,使消化设备利用效率降低,投资和运行费用提高。五、厌氧活性污泥厌氧活性污泥主要由厌氧微生物及其代谢的和吸附的有机物、无机物组成。厌氧活性污泥的浓度和性状与消化的效能有密切的关系。性状良好的污泥是厌氧消化效率的基础保证。厌氧活性污泥的性质主要表现为它的作用效能与沉淀性能,前者主要取决于活微生物的比例及其对废物的适应性和活微生物中生长速率低的产甲烷菌的数量是否达到与不产甲烷菌数量相适应的水平。活性污泥的沉淀性能与污泥的凝聚性有关、与好氧处理一样,厌氧活性污泥的沉淀性能也以SVI衡量。六、搅拌和混合混合搅拌是提高消化效率的工艺条件之一。没有搅拌的厌氧消化池,池内料液常有分层现象。通过搅拌可消除池内梯度,增加食料与微生物之间的接触,避免产生分层,促进沼气分离。在连续投料的消化池中,还使进料迅速与池中原有料液相混匀。搅拌的方法有:(1)机械搅拌器搅拌法;(2)消化液循环搅拌法;(3)沼气循环搅拌法等。其中沼气循环搅拌,还有利于使沼气中的CO2作为产甲烷的底物被细菌利用,提高甲烷的产量。七、废水的营养比(C/N)一般认为,厌氧法中碳:氮:磷控制为300~200:5:1为宜。此比值大于好氧法中100:5:1,这与厌氧微生物对碳素养分的利用率较好氧微生物低有关。在碳、氮、磷比例中,碳氮比例对厌氧消化的影响更为重要。在厌氧处理时提供氮源,除满足合成菌体所需之外,还有利于提高反应器的缓冲能力。若氮源不足,不仅厌氧菌增殖缓慢,而且消化液缓冲能力降低。相反,若氮源过剩,氮不能被充分利用,将导致系统中氨的过分积累,抑制产甲烷菌的生长繁殖,使消化效率降低。八、有毒物质抑制物质浓度/(mg/L)危害挥发性脂肪酸2000导致PH下降氨氮150~300抑制消化过程溶解性硫化物200抑制产甲烷过程重金属离子与酶结合变性氢氧化物絮凝九、生物固体停留时间(污泥龄)定义:与好氧同但消化池污泥龄等于水力停留时间。由于产甲烷菌生长慢,厌氧消化需要较长的污泥龄。其中厌氧活性污泥反应器是工艺中的核心废水调节池热交换器↑35℃厌氧活性污泥反应器气柜沉淀池出水回流污泥剩余污泥第二节厌氧生物处理工艺一、早期用于处理废水的厌氧消化构筑物是化粪池和双层沉淀池。化粪池是一个矩形密闭的池子,用隔墙分为两室或三室,各室之间用水下连接管接通。废水由一端进入,通过各室后由另一端排出。悬浮物沉于池底后进行缓慢的厌氧发酵。各室的顶盖上设有人孔,可定期(数月)将消化后的污泥挖出,供作农肥。这种处理构筑物通常设于独立的居住或公共建筑物的下水管道上,用于初步处理粪便废水。工作原理2级(平流沉淀+厌氧污泥消化)全国各地使用广泛,为生活污水的预处理——液固分离处理污泥处理污泥及厌氧杀寄生虫及病菌第一代厌氧反应器——化粪池缺点:污泥量少、易被带出,静态消化二、厌氧处理的各种反应器化粪池厌氧消化池UASBEGSB工作原理2级(平流沉淀+厌氧污泥消化)全国各地使用广泛,为生活污水的预处理——液固分离处理污泥处理污泥及厌氧杀寄生虫及病菌第一代厌氧反应器——化粪池缺点:污泥量少、易被带出,静态消化克服了第一代的缺点,且处理污水第二代厌氧反应器(1)UASB反应器influentSludgebed污泥沉降沼气阻挡收集effluent上流式厌氧污泥床反应器的特点是:(1)反应器内污泥浓度高,一般平均污泥浓度为30~40g/L;(2)有机负荷高,水力停留时间短,中温消化,COD容积负荷一般为10~20kgCOD/m2·d;(3)反应器内设三相分离器,被沉淀区分离的污泥能自动回流到反应区,一般无污泥回流设备;(4)无混合搅拌设备。投产运行正常后,利用本身产生的沼气和进水来搅动;(5)污泥床内不填载体,节省造价及避免堵塞问题。但反应器内有短流现象,影响处理能力;进水中的悬浮物应比普通消化池低得多,特别是难消化的有机物固体不宜太高;运行启动时间长,对水质和负荷变化比较敏感。工业级UASB装置://://钢制圆形结构混凝土方形结构(便于施工及分离器设置)全世界有几千座UASB反应器,占所有厌氧反应器(第二代以上)总数的64%,应用广泛UASB反应器完全混合型EGSB反应器厌氧滤池厌氧塘流化床-复合床6464%%(2)(2)AnaerobicFilterAnaerobicFilter厌氧滤床厌氧滤床(AF)(AF)(3)Anaerobicfluidizedbedbiofilmreactor厌氧流化床生物膜反应器(厌氧流化床生物膜反应器(AFB)AFB)①化工流化床原理②炉灰等作生物膜载体,生物颗粒流化③出水外回流第三代厌氧生物反应器厌氧膨胀颗粒污泥床内循环反应器升流式污泥床过滤器填料填料EGSBICUBF以前通常能不用厌氧法处理的就不用以前通常能不用厌氧法处理的就不用,不得已时结合厌氧处理与好氧处理先后处理,现在厌氧反应器发展迅速逐渐成为水处理的新的主力设备。厌氧法的工艺和设备一、普通厌氧消化池在一个消化池内进行酸化,甲烷化和固液分离。设备简单。反应时间长,池容积大。污泥易随水流带走,消化器内难以保持大量的微生物细胞。搅拌方式有三种:池内机械搅拌;沼气搅拌;循环消化液搅拌。容积负荷为2‾6kgCOD/m3•d常用加热方式有三种:(1)废水在消化池外先经热交换器预热到定温再进入消化池;(2)热蒸汽直接在消化器内加热;(3)在消化池内部安装热交换管。普通消化池一般的负荷,中温为2~3kgCOD/m3·d,高温为5~6kgCOD/m3·d。普通消化池的特点是可以直接处理悬浮固体含量较高或颗粒较大的料液。厌氧消化反应与固液分离在同一个池内实现,结构较简单。但缺乏持留或补充厌氧活性污泥的特殊装置,消化器中难以保持大量的微生物细胞;对无搅拌的消化器,还存在料液的分层现象严重,微生物不能与料液均匀接触,温度也不均匀,消化效率低等缺点。二、厌氧接触法为克服普通消化池不能持留或补充厌氧活性污泥的缺点,在消化池后设沉淀池,将沉淀污泥回流至消化池,形成了厌氧接触法,其工艺流程如右图所示。该系统既使污泥不流失、出水水质稳定,又可提高消化池内污泥浓度,从而提高设备的有机负荷和处理效率。厌氧接触法的特点:(1)通过污泥回流,保持消化池内污泥浓度较高,一般为10~15g/L,耐冲击能力强;(2)消化池的容积负荷较普通消化池高,中温消化时,一般为2~10kgCOD/m3·d,水力停留时间比普通消化池大大缩短,如常温下,普通消化池为15~30天,而接触法小于10天;(3)可以直接处理悬浮固体含量较高或颗粒较大的料液,不存在堵塞问题;(4)混合液经沉淀后,出水水质好,但需增加沉淀池、污泥回流和脱气等设备。厌氧接触法还存在混合液难于在沉淀池中进行固液分离的缺点。三、厌氧生物滤池厌氧微生物附着于填料的表面生长,当废水通过填料层时,在填料表面的厌氧生物膜作用下,废水中的有机物被降解并产生沼气,沼气从池顶部排出。滤池中的生物膜不断地进行新陈代谢,脱落的生物膜随出水流出池外。处理水原废水处理水沼气沼气滤料原废水滤料图19-10厌氧生物滤池废水从池底进入,从池上部排出,称升流式厌氧滤池;废水从池上部进入,从池底部排出,称降流式厌氧滤池。厌氧生物滤池的特点是:(1)由于填料为微生物附着生长提供广较大的表面积,滤池中的微生物量较高,又生物膜停留时间长,平均停留时间长达100天左右,因而可承受的有机容积负荷高,COD容积负荷为2~16kgCOD/m3·d,且耐冲击负荷能力强;(2)废水与生物膜两相接触面大,强化了传质过程,因而有机物去除速度快;(3)微生物固着生长为主,不易流失,因此不需污泥
本文标题:第十五章污水的厌氧生物处理
链接地址:https://www.777doc.com/doc-6555278 .html