您好,欢迎访问三七文档
第五章电位分析法内容介绍§5—1电位分析法概述§5—2电位分析法中所用的电极§5—3直接电位分析法§5—4电位滴定法以测定化学电池两电极间的电位差或电位差的变化为基础的电化学分析法叫电位分析法。§5—1电位分析法概述一.电位分析法的种类:直接电位法:电位滴定法:直接电位法:根据电极电位与待测组分活度之间的关系,利用测得的电位差值(或电极电位值)直接求得待测组分的活度(或浓度)的方法。电位滴定法:根据滴定过程中电位差(或电极电位)的变化来确定滴定终点的容量分析法。二.电位分析法的理论基础:电位分析法是利用电极的电极电位与待测组分的活度之间的关系来进行测定的。0lnabBAcdCDaaRTEEnFaa§5—2电位分析法中所用的电极一、根据电极上是否发生电化学反应分为两种:1.基于电子交换反应的电极2.离子选择性电极(一)基于电子交换反应的电极:这类电极是以金属为基体的电极。所以也叫金属基电极。它们的共同特点是电极反应中有电子的交换,即有氧化还原反应。(1)第一类电极(2)第二类电极(3)第三类电极(4)第零类电极1、第一类电极:金属与其离子的溶液处于平衡状态所组成的电极。用(MMn+)表示。电极反应为:Mn++ne=M其电极电位可由下式计算:EMn+/M=E0+0.059/nlgaMn+例如Ag+|Ag电极2.第二类电极:由金属及其难溶盐及与含有难溶盐相同阴离子溶液所组成的电极,表示为M/MnXm,Xn-,电极反应为:MnXm+me=nM+mXn-电极电位为:EMnXm/M=E0+0.059l/mlg1/amXn-常用的有Ag/AgCl、甘汞电极(Hg/Hg2Cl2电极)。对于甘汞电极,其电极反应为:Hg2Cl2+2e=2Hg+2Cl-3.第三类电极:它由金属,该金属的难溶盐、与此难溶盐具有相同阴离子的另一难溶盐和与此难溶盐具有相同阳离子的电解质溶液所组成。表示为M(MX,NX,N+)。如:Zn|ZnC2O4(s),CaC2O4(s),Ca2+Ca2++ZnC2O4+2eCaC2O4+Zn4.零类电极:由一种惰性金属(如Pt)和同处于溶液中的物质的氧化态和还原态所组成的电极,表示为Pt/氧化态,还原态。如Pt/Fe3+,Fe2+,其电极反应为:Fe3++e=Fe2+3200.0592lgFeFeaEEa其电极电位为:(二)离子选择性电极:离子选择性电极是一类具有薄膜的电极。其电极薄膜具有一定的膜电位,膜电位的大小就可指示出溶液中某种离子的活度,从而可用来测定这种离子。1.电极构造:离子选择性电极基本上都是由薄膜、内参比电极、内参比溶液、电极腔体构成,内参比电极电极腔体内参比溶液电极薄膜2.离子选择性电极的电极电位:对阳离子,电极电位为:0.059lgMEKan对阴离子,电极电位为:0.059lgNEKan式中:E为离子选择性电极的电极电位;K为常数;aM、aN为阳离子和阴离子的活度;n为离子的电荷数。3.离子选择性电极的种类:由于离子选择性电极敏感膜的性质、材料和形式不同,所以我们可以按下列方式进行分类:离子选择性电极晶体膜电极非晶体膜电极原电极敏化离子选择性电极单晶膜电极多晶膜电极固定基体电极流动载体电极气敏电极酶电极4.离子选择性电极的特性参数:对于离子选择性电极的性能可以用它的特性参数来表示。1)线性范围与检测极限:离子选择性电极的电位与溶液中特定离子活度之间的关系可用能斯特方程式表示,即:0.0592lgEKan-lgaiDFCGE检测下限线性范围:图9-8中的直线部分CD所对应的活度范围。检测下限:E与lga的关系符合能斯特方程式的最低离子活度,叫离子选择性电极的检测下限。2)选择性系数Kij:选择性系数表示干扰离子j对待测离子i的干扰程度。它越大,干扰就越大,它越小,干扰也就越小。离子选择性电极除对特定待测离子有响应外,共存(干扰)离子亦会响应,此时电极电位为:0.059lg()iijjjiKaKaz3)响应时间:离子选择性电极的响应时间是指从离子选择性电极和参比电极一起接触试液(或试液中待测离子活度发生变化)算起,到电极电位值变稳定时为止所需的时间。4)电极内阻:离子选择性电极的内阻都很高。5.常用离子选择性电极:1)pH玻璃膜电极:pH玻璃膜电极属于非晶体膜电极中的固定基体电极。它是最早使用、最重要和使用最广泛的氢离子指示电极,用于测量各种溶液的pH值。A.PH玻璃电极的构造:PH玻璃电极是由一种特定的软玻璃(在SiO2基质中加入Na2O和少量CaO烧制而成)吹制成的球状的膜电极,其结构一般为:球状玻璃膜是由特殊配比的玻璃(Na2SiO3,厚0.1~0.5mm)构成,结构为:B、响应机理(膜电位的产生):当球状玻璃膜的内外玻璃表面与水溶液接触时,Na2SiO3晶体骨架中的Na+与水中的H+发生交换:G-Na++H+====G-H++Na+因为平衡常数很大,因此,玻璃膜内外表层中的Na+的位置几乎全部被H+所占据,从而形成所谓的“水化层”。外部试液a外内部参比a内水化层干玻璃Ag+AgCl当测量时,将电极放入试液中,在膜外表面与试样间固—液两相界面,因H+交换形成外相界电位(E外)。膜内表面与内参比液固—液相界面也产生内相界电位(E内)。这两电位的大小是不等的,这样在横跨整个膜的范围内就存在一个电位差,即为膜电位:12(0.0592lg)(0.0592lg)0.0592lg0.0592HHHHHEEEaKaaKaKaKpH外膜内外外表面内内表面外C、PH玻璃电极的电极电位:0.0592EEEEKpH玻内参膜内参试0.0592EKpH玻玻试D、电位法测定溶液pH的基本原理:电位法测定溶液的pH,是以玻璃电极作指示电极,饱和甘汞电极作参比电极,浸入试液中组成原电池:E=E甘–E玻0.0592'0.0592EEKpHKpH甘玻试试标准校正法的方法和原理如下:先测定标准pH缓冲液的电动势和被测溶液的电动势。标准pH缓冲液和被测溶液的电动势为:'0.0592ssEKpH'0.0592xxEKpH0.0592xsxsEEpHpH两式相减得:E、玻璃电极特点:对H+有高度选择性的指示电极,使用范围广,不受氧化剂还原剂影响,适用于有色、浑浊或胶态溶液的pH测定;响应快(达到平衡快)、不沾污试液。膜太薄,易破损,且不能用于含F-的溶液;电极阻抗高,须配用高阻抗的测量仪表。存在酸差和碱差(或钠差)2)晶体膜电极:晶体膜电极的敏感膜一般为难溶盐加压或拉制成的薄膜。根据膜的制备方法可分为单晶膜电极和多晶膜电极两类。单晶膜电极:电极的整个晶体膜是由一个晶体组成,如F电极;多晶膜电极:电极的整个晶体膜是由多个晶体在高压下压制组成,如Cl,Br,I,Cu2+,Pb2+,Cd2+等离子选择性电极的晶体膜分别用相应的卤化银或硫化物晶体压制而成。氟离子选择性电极是目前最成功的单晶膜电极。结构为:将氟化镧单晶片封在硬塑料管的一端,内充溶液为0.1mol/LNaF和NaCl,内参比电极为Ag/AgCl电极。它的电极电位可由下式计算:E=K-0.059lgaF-酸度影响:OH-与LaF3反应释放F-,使测定结果偏高;H+与F-反应生成HF或HF2-降低F-活度,使测定偏低。3)流动载体电极,又称液膜电极:敏感膜是由溶解在与水不相溶的有机溶剂中的活性物质构成的憎水性薄膜。构成:固定膜(活性物质+溶剂+微孔支持体)+液体离子交换剂+内参比电极。机理:膜内活性物质(液体离子交换剂)与待测离子发生离子交换反应,但其本身不离开膜。这种离子之间的交换将引起相界面电荷分布不均匀,从而形成膜电位。几种流动载体电极:NO3-:(季铵类硝酸盐+邻硝基苯十二烷醚+5%PVC)30.059lgMNOKaCa2+:(二癸基磷酸钙+苯基磷酸二辛酯+微孔膜)20.059lg2MCaKa6.离子选择性电极的优点:1)电极构造简单,测定时不需要复杂仪器,且操作简便。2)灵敏度高,适用的浓度范围广,一般可达到相差几个数量级。如氟电极,它可用于测定的浓度范围为10-1~10-6mol/L。3)选择性好:用离子选择性电极进行测定时的干扰是比较少的。特别是它对测定环境的要求较低,有利于测定的进行。4)分析快速简便:5)能用于几十种阴阳离子的测定,对于用其它方法难以测定的某些离子,也可用此法进行测定。6)将离子选择性电极制成微型和超微型,可用于医学生物学等特殊领域内的分析。电位分析法中所用的电极一、根据电极上是否发生电化学反应分为两种:二、根据使用电极的功能,分为指示电极和参比电极:指示电极——用来指示溶液中待测离子活度的电极。它的电极电位值要随着溶液中待测离子活度的变化而变化,其电极电位值可指示出溶液中待测离子的活度。如pH玻璃电极、氟离子选择性电极等。参比电极——测量时作为对比的电极,它的电极电位值在测量条件下是固定不变的。常用的参比电极有甘汞电极和银-氯化银电极。§5—3直接电位分析法直接根据电极电位值与离子活度之间的关系来求得待测离子活度(或浓度)的方法,叫直接电位法。一、标准曲线法:1.活度的测定:把指示电极和参比电极一起分别插入一系列巳知待测离子准确活度的标准溶液中,测定不同活度下的电位值。以测得的电位值对相应的活度的对数作图,得到标准曲线(为一直线)。然后再在相同条件下测定试液的电位值,由测得的电位值就可从标准曲线上查得试液中待测离子活度的对数,从而求得其活度。2.浓度的测定:配制一系列浓度为巳知的待测离子的标准溶液,在所配制的标准溶液和待测试液中加入相同量的离子强度较高的溶液。然后先测定标准溶液的电位值,以测得的电极电位值对待测离子浓度的对数作图得标准曲线;最后再在相同条件下测定试液的电极电位值,由电极电位值从曲线上就可查出试液中待测离子的浓度。TISAB(离子强度调节剂):维持溶液的离子强度外,起辅助作用的溶液。如:测定水中F-时,要在试液和标准溶液中加入1mol/LNaCl,0.25mol/L醋酸,0.75mol/L醋酸钠及0.001mol/L柠檬酸钠。标准溶液浓度10-2mol/L10-3mol/L10-4mol/L10-5mol/L10-6mol/L㏒C-2-3-4-5-6电位mv188246303359401测定溶液中氟的浓度-6-5-4-3-2150200250300350400试液的电位值为:362mv二、标准加入法:以测定阳离子为例来介绍它的分析方法:第一步:先测定体积为Vx,浓度为Cx的样品溶液(试液)的电位值E1;第二步:在样品溶液(试液)中加入体积为Vs(Vx>>Vs),浓度为Cs的标准溶液,并测定其电位值E2;然后再用测得的E1、E2通过计算求得试液中待测离子的浓度。/(101)ESCsVsCxVx式中:△E=E2-E1;S=0.0592/n,例:用直接电位法测定水样中的钙离子浓度。移取100.0mL水样于烧杯中,将饱和甘汞电极(SCE)和钙离子选择性电极浸入溶液中。测得钙离子选择性电极的电位为-0.0619V(对SCE)。加入1.00mL0.0731mol/LCa(NO3)2标准溶液,混合后测得钙离子选择性电极的电位为-0.0483V(对SCE)。计算原水样中钙离子的浓度。解:由公式CS=0731mol/L,Vs=1.00mL,Vx=100.0mL,S=0.059/2=0.0295,△E=-0.0483+0.0619=0.0136V/(101)ESCsVsCxVx0.0136/0.029540.07311.00100.0(101)3.8710(/)CxmolL三、直接电位法的测量误差:电动势测定的准确性将直接决定待测物浓度测定的准确性:对下式求导:lnRTEKcnF得:RTdcdEnFcRTdcEnFc或相对误差为://3900(25)onccERTFnEC§5—4电位滴定法利用滴定过程中电极电位的变化来确定滴定终点的分析方法。即在滴定到终点附近时,电极的电极
本文标题:第五章电位分析法
链接地址:https://www.777doc.com/doc-6555414 .html