您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 固定化酶酸化UASB两相厌氧有机酸代谢特征于宏兵
/UASB1,2,3,2,3,3(1., 300071;2., 100012;3., 130026):UASB,、,,COD.:28.2%,,44.8%,38.4%,6.9%,9.8%,.99.8%,92.0%,59.1%,46.2%,;,0.21h-1.,COD90%,COD,:;;;:X703.1 :A :0250-3301(2006)03-0483-05:2004-12-31;:2005-02-23:(2003BA614A-10-01):(1958~),,,.OrganicAcidsConversioninTwo-phaseofImmobilizationEnzymeAcidficationandUASB,AnaerobicReactorforWastewaterTreatmentYUHong-bing1,2,WURui3,DUANNing2,LINXue-yu3,HUANGTao3(1.CollegeofEnvironmentScienceandEngineering,NankaiUniversity,Tianjin300071,China;2.ChineseResearchAcademyofEnvironmentScience,Beijing100012,China;3.CollegeofEnvironmentandResource,JilinUniversity,Changchun130026,China)Abstract:UsingimmobilizationenzymeacidificationphaseandUASBtoproducemethanephaseastwo-phaseanaerobicfermentationprocess,thechangecharacteristicsandthechangerateoforganicacidandethanolorganic,compositionandfermentationtypeaswellasCODremovalwerestudied.Theexperimentalresultsshowedthatacidficationrate(VFA/COD)wasconsistentlyover28.2%.Theconcentrationofethanol,aceticacid,butyricacidandpropionicacidinacidfication-phasewere44.8%,38.4%,9.8%and6.9%,respectively,asfollow:ethanolaceticacidbutyricacidpropionicacid.Theremovalofethanol,aceticacid,butyricacidandpropionicacidinmethaneproductionphasewere99.8%,92.0%,59.1%and46.2%,respectively,andtheremovalofCODwashigherthan90%.Theconversionvelocityofsubstrateinthemethaneproductionphaseshowedasfollow:ethanolaceticacidbutyricacidpropionicacid.Thefermentationtypeoftheacidificationphasewasethanol-typefermentation.TheeffectofeachacidandethanolconversiononCODremovalwasasfollow:ethanolaceticacidbutyricacidpropionicacid.Keywords:immobilizationenzymeacidfication;two-phaseanaerobicfermentation;organicacids;ethanol UASB,.,,UASB[1,2],,,,.,,[3],[4,5].[6],,[7],,[8],,,,,[9,10]、,、.1 1.1 :200u/g,pH4.5~7,27320063 ENVIRONMENTALSCIENCEVol.27,No.3Mar.,2006DOI:10.13227/j.hjkx.2006.03.01635~80℃,;:,0.4~1.0mm,9~30nm,0.75g/cm3.(1).1 Table1 WastewaterqualityCOD/mg·L-1SS/mg·L-1TN/mg·L-1/mg·L-1pHCOD/TN33000~350004600~520022004700~52004.515∶11.2 1,0.6L(35×200mm),.180g,0.36g/mL,HRT3.0h,0.18cm/min.UASB,2.5L,21∶8,,65~70℃,,Q=2.5L/d,HRT24h.,TSS10g/L.70dCODHRT.COD,,VFA,(VFA/COD).COD:(ct-c0)×1R/(ctCOD-c0COD)×100%,c0ct;ctCODc0CODCOD;R1mgCOD,2.08,1.07,1.51,1.82[11].1 /UASBFig.1 Schematicdiagramoftheimmobilizationenzymehydrolysisacidification/UASBtwo_phaseanaerobicprocess2 2.1 COD,.VFAVFA/COD,.2 Fig.2 Compsitionoforganicacidinhydrolysismatters.2,,COD,,COD6000mg/L10000mg/L1917.81mg/L,21.4%,1644mg/L,24.6%,,17.6%,12.1%.,COD.,COD,,,44.8%、38.4%、6.9%、9.8%..83.2%,...2.2 HRT484 27 3.1h,397.4mg/L,,2.5h,2013mg/L,5.1h812mg/L,2.5h1841mg/L,2.6..,,.,2.5~3.0h.4,,1h,79.24mg/L,HRT,2.5h340mg/L,,4.3.1h165mg/L,2.5h498mg/L,.3.0.,HRT2.5~3.0h,,.3 Fig.3 Changeofethanolandacetatewithtime4 Fig.4 Changeofpropionicacidandbutyricacidwithtime2.3 ,.,.5..8h2003mg/L41mg/L,97.9%,HRT16、24、32、40h,99.4%、99.6%、99.8%99.7%.HRT16h,,.8h149mg/L,89.2%,HRT16h、24h、32h、40h,90.1%、91.0%、92.5%92.0%.,HRT.16h,90.1%,.6,HRT,,,,8h298mg/L,14%.HRT32h、40h44.2%59.1%.,461.0mg/L,8h,386mg/L,16.2%,HRT24h,32h40h,39.2%,44.9%46%.40h.,45%~60%,.:.,.5 Fig.5 Changeofethanolandaceticacidwithtime2.4 CODCOD.,,,,COD.7,8,4853 6 Fig.6 ChangeofpropionicacidandbutyricacidwithtimeHRT8h,COD52.1%,VFA40.6%,97.4%,90.1%,14%16%;HRT24h,99.4%,7 CODVFA/CODFig.7 CODremovalratewithVFA/COD8 CODVFAFig.8 RemovalrateofCODandVFAinsystem90.9%,37.9%39.2%,COD68.3%.COD.HRT32h,99.6%,92.5.%,44.2%,44.9%,,COD83%.HRT40h,COD91.3%,99.8%,,92%,,59.1%、46.2%,COD、.,CODHRT,;COD,COD40.6%18.0%;3.02%3.6%,.COD,.k,0.21h-1,0.089h-1,0.018h-1,0.021h-1,.2,COD2.,COD.,,,CODHRT,HRT32h.COD.3 (1),83.2%.44.8%,38.4%.6.9%,9.8%..COD.COD6000mg/L10000mg/L,21.4%26.3%.17.6%12.1%.(2).COD11304mg/L,HRT1h2.5h,2013mg/L,5.0;1841mg/L,2.6;340mg/L,4.3;498mg/L,3.0.HRT2.5~3.0h.(3)486 27COD,COD、、、.,COD91.3%,99.8%,(k)0.21,92.0%,0.089,59.1%46.2%,0.0180.021.COD,:.,.VFA/COD28.21%.:[1],,,.[J].,2003,24(4):89~93.[2]LaraJBeal,DRajRaman.SequentialTwo-stageAnaerobicTreatmentofConfectioneryWastewater[J].J.Agric.Engin.Res.,2000,76:211~217.[3]StegemaMHL,PeijnenburgWJM,VerboomH.Aquantitativestructure_activity.Relationshipforthedirect photohydrolysisofmeta_subtitutedhalobenzenederivativesinwater[J].Chemosphere,1993,26(5):837~849.[4]Nuriazabar,Pepiursillo,RichardESpeece.EffectofProcessConfigurationandSubstrateComplexityonthePerformanceofAnaerobicProcesses[J].Wat.Res.,2001,35(4):817~829.[5]ShinHS,HanSK,SongYC,etal.PerformanceofUSABreactortreatingleachatefromacidogenicfermenterinthetwo-phaseanaerobicdigestionoffoodwaste.[J].Wat.Res.,2001,35(14):3441~3447.[6],,.[J].,2005,25(1):16~21.[7],,.[J].,1997,5:23~26.[8],,,.[J].,1994,(3):18~23.[9],.[M].:,2002.2~14.[10],.[J].,1999,32(6):35~38.[11].[M].:,1992.582~583.,《》、《》、《》《JournalofEnvironmentalSciences》..200651,,():1),(、).2),.,,().、.,.《》《》《》《JournalofEnvironmentalSciences》20051214873
本文标题:固定化酶酸化UASB两相厌氧有机酸代谢特征于宏兵
链接地址:https://www.777doc.com/doc-6565835 .html