您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 海水电池资源化利用虾池养殖废水的实验研究施毅君
351Vol.35No.120191JournalofFujianNormalUniversityNaturalScienceEditionJan.2019.DOI10.12046/j.issn.1000-5277.2019.01.0101000-5277201901-0068-07121131313131.3500072.4000423.350007Mg2+NH4+P.、pH、.OH-pH10.0.1∶1NH4+-NP38.12%98.78%.15~35℃.21mW.O646A2018-04-112007Y00261987-、.yanchao_jin@163.comExperimentalStudyontheResourceUtilizationoftheShrimpPondWastewaterbytheSeawaterBatterySHIYi-jun1HURun-zhi2FUJian-ling1CHENRi-yao13JINYan-chao13ZHENGXi13CHENXiao131.CollegeofEnvironmentalScienceandEngineeringFujianNormalUniversityFuzhou350007China2.SinopharmChongqingPharmaceuticalandMedicalIndustryDesignInstituteCorporationChongqing400042China3.FujianKeyLaboratoryofPollutionControlandResourceReuseFuzhou350007ChinaAbstractThemagnesiumanodecorrosionoftheseawaterbatterygeneratedMg2+whichcouldformstruvitewiththeNH4+andPphosphorusintheshrimppondwastewater.Itcouldrealizere-sourceutilizationinthisway.TheinfluencesoftheP∶NmolarratiothepHvalueandthetemper-atureontheelectricitygenerationandthestruviteprecipitationhavebeeninvestigated.TheresultsshowthathydroxylioncouldbegeneratedbythecathodesothatthepHvalueofwastewaterwassta-bleataboutpH10.0whichcouldprovideappropriatealkalineconditionfortheprecipitation.In-creasingtheP∶Nmolarratioto1∶1couldenhancethestruvitecrystallizationandtheNH4+-NandPrecoveryratioswere38.12%and98.78%respectively.Increasingtemperaturecouldshortenthetimeneededforrecoveriesintherangefrom15℃to35℃.Theseawaterbatteriescouldgeneratedstableelectricityanditwasabout21mWduringtheexperiments.KeywordsshrimppondwastewaterseawaterbatterystruviteNH4+-Nphosphorus.20%~30%NH4+-NP1.NH4+-NP2...132090.MgNH4PO4·6H2O、.1.Mg2++NH4++PO3-4+6H2→OMgNH4PO4·6H2O↓14.MgCl25.Gunay6MgO.Lee7....100a8.-2.37VvsSHE-2.31VvsSHE-1.25VvsSHE9..、10...Mg2+NH4+-NP.、pH、.11.199.80%NH4Cl、KH2PO4、HCl、NaOH.4℃.1.21Fig.1Schematicofthelab-scaledevice1252cm234cm22Ω3cm...0.9L.1.3NH4+-NP0.45μm.700nm11.NH4+-N420nm11.Cary5000.NH4+-NP962019ηN=ρN0-ρNtρN0×100%2ηP=ρP0-ρPtρP0×100%3ρN0mg·L-1ρP0mg·L-1NH4+-NP.ρNtmg·L-1ρPtmg·L-1tNH4+-NP.Pt=ItUt4ItmAUtVt.1.430s30s30s.700r·min-11h.25℃pHpH1∶1.3.22.11∶11NH4+-N15.62%2.1hP84.50%7h98.65%0.17mg·L-1.2cOH-pH9.010.0.Mg∶N∶P1∶1∶1KH2PO42a2P∶N1∶1NH4+-N38.12%.P98.78%.NH4+-NP∶N2∶1NH4+-N1∶1P∶N.P3.91mg·L-1.NH4+、Mg2+、PO43-pH12.Mg2+.PNH4+-N.MgOH2Mg3PO4213.PNH4+-N1∶1P∶N.1Tab.1CharacteristicsoftheshrimppondwastewaterpHρNH4+-N/mg·L-1ρP/mg·L-1ρ/mg·L-17.60±0.3913.66±0.943.05±0.1557.00±1.123.10±0.102NH4+-NPTab.2ResidualconcentrationsandrecoveryratiosofNH4+-NandPatdifferentP∶NratiosρNH4+-N/mg·L-1ηN/%ρP/mg·L-1ηP/%PN11.63±0.3415.62±0.760.17±0.0198.65±0.47nP∶nN=1∶19.73±0.1838.12±0.190.90±0.0698.78±0.40nP∶nN=2∶18.65±0.6840.03±2.163.91±0.0397.99±0.010712P∶NFig.2ExperimentsatdifferentP∶Nratiosfromtheshrimppondwastewater2.2pHpHpH=8.03hNH4+-N19%.pH9.03aNH4+-N37.23%.pH.pHNH4+NH314.pH10.5NH4+-N3a.pH=9.015.pH=9.0pHNH4+-N50.54%6.35mg·L-13.pH=8.0P85.85%.3pH9.092.78%.3bpH8.0P.pH=10.095.27%.pH8.09.0P.Mijangos16MgNH4PO4·6H2OMg3PO42.pH10.0P.NPpH=9.0pH=10.0pH.pH8.010.02c.pH.3pHNH4+-NPnP∶nN=1∶1Tab.3ResidualconcentrationsandrecoveryratiosofNH+4-NandPunderdifferentpHconditionsnP∶nN=1∶1ρNH4+-N/mg·L-1ηN/%ρP/mg·L-1ηP/%pH=8.08.65±0.4732.06±1.9614.70±0.4385.85±0.30pH=9.06.35±0.3450.54±1.076.29±0.1492.78±0.29pH=10.06.49±0.8845.69±0.234.07±0.9095.27±0.073pHnP∶nN=1∶1Fig.3ExperimentsunderdifferentpHconditionsfromtheshrimppondwastewaternP∶nN=1∶11720192.3152535℃.4a15~35℃.15℃3hNH4+-N19.7%.35℃3hNH4+-N33.49%.4b15℃35℃1hP59.56%73.39%.P1.22mg·L-10.43mg·L-14.Bhuiyan1755℃.Mg2+.pH4c15℃pH10.0.Zhou13pH9.0MgOH2.35℃pH9.5.pH=9.535℃NH4+-N39.08%4.4NH4+-NPnP∶nN=1∶1Tab.4ResidualconcentrationsandrecoveryratiosofNH4+-NandPatdifferenttemperaturesnP∶nN=1∶1ρNH4+-N/mg·L-1ηN/%ρP/mg·L-1ηP/%15℃8.11±0.2736.70±0.531.22±0.0398.69±0.0825℃8.11±0.1838.12±0.191.85±0.0698.78±0.4035℃8.52±0.2039.08±0.340.43±0.0799.51±0.084nP∶nN=1∶1Fig.4ExperimentsatdifferenttemperaturefromtheshrimppondwastewaternP∶nN=1∶12.45Fig.5Outputpowerofseawaterbatteriesunderdifferentconditions51h./MgOH2..1h.271..5a5c.7h20mW26mW.5bpH.pHpHMgOH2.1h21mW..3Mg2+、OH-.NH4+-N.1∶1NH4+-N38%.pHNH4+-NpH=9.0NH4+-N50%..P98%..0.9L21mW.1LUPATSCHIKISSILGW.PredictingaquaculturewastefromgiltheadseabreamSparusauratacultureusinganutri-tionalapproachJ.AquatLivingResour1998114265-268.2RYUHDKIMDLEESI.ApplicationofstruviteprecipitationintreatingammoniumnitrogenfromsemiconductorwastewaterJ.JHazardMater20081561163-169.3SHULSCHNEIDERPJEGATHEESANVetal.Aneconomicevaluationofphosphorusrecoveryasstruvitefromdi-gestersupernatantJ.BioresourTechnol200697172211-2216.4ZHANGTDINGLRENHetal.Ammoniumnitrogenremovalfromcokingwastewaterbychemicalprecipitationrecy-cletechnologyJ.WaterRes200943205209-5215.5LIUZZHAOQLEEDJetal.EnhancingphosphorusrecoverybyanewinternalrecycleseedingMAPreactorJ.BioresourTechnol200899146488-6493.6GUNAYAKARADAGDTOSUNIetal.UseofmagnesitasamagnesiumsourceforammoniumremovalfromleachateJ.JHazardMater20081561/3619-623.7LEESIWEONSYLEECWetal.RemovalofnitrogenandphosphatefromwastewaterbyadditionofbitternJ.Chemosphere2003514265-271.8WILCOCKWSKAUFFMANPC.Developmentofaseawaterbatteryf
本文标题:海水电池资源化利用虾池养殖废水的实验研究施毅君
链接地址:https://www.777doc.com/doc-6568176 .html