您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 山东省2020年课改高考数学考试说明及样题
山东省2020年课改高考数学考试说明及样题(一)命题指导思想1.命题应依据教育部《普通高中数学课程标准(实验)》和《2020年普通高等学校招生全国统一考试新课程标准数学科考试大纲》(待发),并结合我省普通高中数学教学实际,体现数学学科的性质和特点。2.命题注重考查考生的数学基础知识、基本技能和数学思想、数学方法、数学能力,体现知识与能力、过程与方法、情感态度与价值观等目标要求。3.命题既要实现平稳过渡,又要体现新课程理念。4.注重试题的创新性、多样性和选择性,具有一定的探究性和开放性。5.命题要坚持公正、公平原则。试题要切合我省中学数学教学实际,数学问题的难度、问题的情景等要符合考生的实际水平。应用题要“贴近生活,背景公平,控制难度”。6.命题要注意必修内容和选修内容的有机联系与适当差异,注重数学学科知识的内在联系。7.试卷要有较高的信度、效度和必要的区分度以及适当的难度,难度系数控制在0.55—0.65之内。(二)知识和能力要求1.知识要求对知识的要求由低到高分为三个层次,依次是知道和感知、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。(1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识或初步的理解,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。(2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单的变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。(3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。2.能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。(1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷运算途径。(2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算。(3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关系;会运用图形与图表等手段形象地揭示问题的本质。(4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。(5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性。(6)实践能力:能够对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学(7)创新意识和能力:能够独立思考,灵活和综合地运用所学数学的知识、思想和方法,提出问题、分析问题和解决问题。(三)考试范围及要求1.考试范围(1)文科《普通高中数学课程标准(实验)》中的必修课程内容和选修系列1内容。数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。数学2:立体几何初步、平面解析几何初步。数学3:算法初步、统计、概率。数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。数学5:解三角形、数列、不等式。选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。选修1-2:统计案例、推理与证明、数系的扩充及复数的引入、框图。(2)理科《普通高中数学课程标准(实验)》中的必修课程内容和选修系列2内容。数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。数学2:立体几何初步、平面解析几何初步。数学3:算法初步、统计、概率。数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。数学5:解三角形、数列、不等式。选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。选修2-3:计数原理、统计案例、概率。2.具体考试内容及其要求(略)(四)考试形式与试卷结构1.考试形式考试采用闭卷、笔试形式。试卷满分为150分,考试时间为120分钟。考试不允许使用计算器。2.试卷结构试卷包括第Ⅰ卷和第Ⅱ卷。试题分选择题、填空题和解答题三种题型。第Ⅰ卷以单项选择题题型呈现,主要考查必修内容中的基本知识和基本技能,共12题,分值为60分。第Ⅱ卷以填空题和解答题题型出现,主要考查数学的思想、方法和能力,必修内容和选修内容都在考查之列。填空题只要求直接填写结果,不必写出计算过程或推证过程;填空题共4题,分值为16分。解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程;解答题共6题,分值为74分。试卷包括容易题、中等难度题和难题,以中等难度题为主。(五)题型示例1.选择题(1)设、为两个非空实数集合,定义集合,则中元素的个数是A.9B.8C.7D.6本小题主要考查集合概念的理解,以及对知识的迁移能力,对基本知识的掌握要准确、牢固.解答:B(2)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样本小题主要考查同集中的抽样方法的有关知识,新课程把这部分只是放到了必修内容里,也就是说对于现代公民应必备的知识,该题既贴近生活,又体现了课程的时代性.简单随机抽样的特点:(1)要求被抽取样本的总体的个数有限,以便对其中每个个体被抽取的概率进行分析.(2)这种抽样是从总体中逐个进行抽取,这就使得它具有可操作性.(3)这是一种不放回抽样.由于在所抽取的实践中常常采用不放回抽样,是简单随机抽样具有较广泛的实用性,而且由于在所抽取的样本中没有被重复抽取的个体,所以便于进行分析与计算.(4)是一种等概率的抽样,不仅每次从总体中抽取一个个体时,每个个体被抽取的概率相等,而且在整个抽样过程中,每个个体被抽取的概率相等,从而保证了这种抽样方法的公平性.当已知总体由差异明显的几部分组成时,为了使样本能更充分反映总体的情况,就将总体分成几部分,然后按照各部分所占的比例进行抽取,这样的抽样就叫分层抽样,而其中所分成的各部分叫做层.分层抽样与简单随机抽样的共同特点是,他们都是等概率抽样,保证了抽样的公平性.寻求新的知识交汇点,将基本知识的考查和思维能力的考查结合起来,创设出新颖的题目表述形式,着重考查考生的理解、分析和判断能力,体现了“以能力立意”的命题要求,涉及多个知识点,实现了知识的有机结合.解题思路:根据三种抽样方法的特征,对所给出的4组样本进行判断,如果是分层抽样,则各号段应占的比例为:4,3,3;如果是系统抽样,则抽取的样本号码应该构成公差为27的等差数列.解答:D(3)已知向量,向量,则的最大值是A.B.4C.12D.1本小题主要考查向量与三角结合的基本运算,考察运算能力。试题给出两个向量的坐标,要求考生会利用向量的坐标运算、三角函数的恒等变换,用多种方法确定向量的模的最大值.考察的重点是学生对向量的概念、向量的运算、向量的模的性质的理解与应用,方法较多,考查较灵活.解法1:∵,,解法2:∵∴∴,∴.4.在这四个函数中,当时,使恒成立的函数的个数是A.0B.1C.2D.3本小题主要考查函数的凹凸性,试题给出了四个基本初等函数,要求考生根据函数的图像研究函数的性质---凹凸性,对试题中的不等关系式:,既可以利用函数的图像直观的认识,也可以通过代数式的不等关系来理解。考查的重点是结合函数的图像准确理解凹凸的含义.解答:B2.填空题(1)已知实数满足等式,写出满足条件的一个关系式.(注:填上你认为可以成为真命题的一种情形即可,不必考虑所有可能的情形)本小题主要考查指数式、指对互化以及分类讨论数学思想方法.此题是一个开放性问题,该类问题有助于考察学生的发散思维和创造意识.解答:①②③,等.(2)求满足的最大整数解的程序框图A处应为.本小题主要考查程序框图的知识和分析问题、解决问题的逻辑思维能力,试题给出了满足题目条件的框图,在给定框图结构的前提条件下,要求考生会读框图、理解框图,并根据流程,写出最后输出框中的内容.考查的重点是学生对程序框图的认识,利用框图流程,不难写出最后的输出结果.该题所涉及内容为新课程新增内容,体现了数学课程与时俱进,反映了计算机科学发展对数学课程的影响,关注此类问题既考察学生对算法思想的了解和掌握,同时还有助于培养学生学习科学技术的兴趣.解答:(3)已知两个圆:①与②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆和的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为.本小题主要考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和归纳推广的能力.解答:(4)已知是不同的直线,是不重合的平面,给出下列命题:①若则;②若则;③若,则;④是两条异面直线,若,则.上面的命题中,真命题的序号是(写出所有真命题的序号).本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,考查逻辑推理和空间想象能力.解答:③④3.解答题(1)已知函数,证明:①经过这个函数图象上任意两个不同的点的直线不平行与轴;②这个函数的图象关于直线成轴对称图形.本小题主要考查函数图象的性质、平行直线和对称图形以及推理论证能力.证明:①设是函数图象上任意不同的两个点,则,且.即,所以直线不平行于轴.②设是函数图象上的任意一个点,则,且.…………(*)所以,,否则有,得,这是不可能的.因此;由(*)式得:此式表示:点关于直线的对称点在函数图象上,由于的任意性,知函数的图象关于直线成轴对称图形.(2)有一批影碟机(VCD)原价为每台800元,在甲乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台每台单价都为760元,依次类推,每多一台则所买各台单价均再减少20元,但每台最低不能低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪家商场购买花费较少?本小题是实际问题,考查的目标是要求考生应用数学知识作出分析,给出合理的判断,考查学生应用数学知识分析问题和解决问题的能力,本题的实际背景是商品销售问题,对考生比较公平,与生活相关性也比较高.本题考查的知识点是分段函数和不等式.解:设某单位需要购买台影碟机,甲乙两商场的购货款的差价为,则因为去甲商场购买共花费,据题意,去乙商场购买共花费,.得故若买少于10台,去乙商场购买花费较少;若买10台,去甲、乙商场购买花费一样;若买超过10台,去甲商场购买花费较少.(3)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=总产量/耕地面积,人均粮食占有量=总产量/总人口数)本小题的背景是人口增长和耕地流失的控制问题,这是当前国情教育中的一个十分突出的问题.通过解决此类问题有助于增强学生的社会责任感和土地保护意识。该题考查的是数列知识,还把利用二项式定理进行近似计算的考查揉合其中,比较新颖.解:设耕地平均每年至多减少公顷,现有人口人,粮食单产吨/公顷,依题意得:得所以答:耕地平均每年至多减少4公顷.(4)如图,在底面是菱形的四棱锥中,,,,点在上,且.(I)证明平面;(II)求以为棱,与为面的
本文标题:山东省2020年课改高考数学考试说明及样题
链接地址:https://www.777doc.com/doc-6600898 .html