您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学专题讲义练-第04讲--平面向量的解题技巧
分享智慧泉源智愛學習传扬爱心喜乐Wisdom&Love第1页(共12页)2020年7月23日星期四第二讲平面向量的解题技巧【考点透视】“平面向量”是高中新课程新增加的内容之一,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主.透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积.2.平面向量的坐标运算,平面向量的数量积及其几何意义.3.两非零向量平行、垂直的充要条件.4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】1.向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式.例1(2007年北京卷理)已知O是ABC△所在平面内一点,D为BC边中点,且2OAOBOC0,那么()A.AOODB.2AOODC.3AOODD.2AOOD命题意图:本题考查能够结合图形进行向量计算的能力.解:22()(,22.OAOBOCOADBODDCODDBDCOAODAOOD)=0,0,故选A.例2.(2006年安徽卷)在ABCD中,,,3ABaADbANNC,M为BC的中点,则MN______.(用ab、表示)命题意图:本题主要考查向量的加法和减法,以及实数与向量的积.解:343A=3()ANNCANCab由得,12AMab,所以,3111()()4244MNababab.例3.(2006年广东卷)如图1所示,D是△ABC的边AB上的中点,则向量CD()分享智慧泉源智愛學習传扬爱心喜乐Wisdom&Love第2页(共12页)2020年7月23日星期四(A)BABC21(B)BABC21(C)BABC21(D)BABC21命题意图:本题主要考查向量的加法和减法运算能力.解:BABCBDCBCD21,故选A.例4.(2006年重庆卷)与向量a=71,,22b27,21的夹解相等,且模为1的向量是()(A)53,54(B)53,54或53,54(C)31,322(D)31,322或31,322命题意图:本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c由433,,,1.555cc4或-时5另一方面,当222274134312525,,cos,.55271432255accacac时当222274134312525,,cos,.55271432255accacac时故平面向量c与向量a=71,,22b27,21的夹角相等.故选B.例5.(2006年天津卷)设向量a与b的夹角为,且)3,3(a,)1,1(2ab,则cos__.命题意图:本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解:,,22,3,323,231,1.bxybaxyxy设由2311,1,2.2312.xxbyy得22223132310cos,.103312ababab310.10故填例6.(2006年湖北卷)已知向量3,1a,b是不平行于x轴的单位向量,且3ab,则b=()(A)21,23(B)23,21(C)433,41(D)0,1命题意图:本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.分享智慧泉源智愛學習传扬爱心喜乐Wisdom&Love第3页(共12页)2020年7月23日星期四解:设,()bxyxy,则依题意有221,33.xyxy1,23.2xy故选B.例7.设平面向量1a、2a、3a的和1230aaa.如果向量1b、2b、3b,满足2iiba,且ia顺时针旋转30o后与ib同向,其中1,2,3i,则()(A)1230bbb(B)1230bbb(C)1230bbb(D)1230bbb命题意图:本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230aaa,∴1232220.aaa故把2ia(i=1,2,3),分别按顺时针旋转30后与ib重合,故1230bbb,应选D.巧妙解法:令1a=0,则2a=3a,由题意知2b=3b,从而排除B,C,同理排除A,故选(D).点评:巧妙解法巧在取1a=0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2.平面向量与三角函数,解析几何等问题结合(1)平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大.例8.设函数f(x)=a-b,其中向量a=(m,cos2x),b=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点2,4,(Ⅰ)求实数m的值;(Ⅱ)求函数f(x)的最小值及此时x的值的集合.解:(Ⅰ)()(1sin2)cos2fxabmxx,由已知πππ1sincos2422fm,得1m.(Ⅱ)由(Ⅰ)得π()1sin2cos212sin24fxxxx,当πsin214x时,()fx的最小值为12,由πsin214x,得x值的集合为3ππ8xxkkZ,分享智慧泉源智愛學習传扬爱心喜乐Wisdom&Love第4页(共12页)2020年7月23日星期四例2.设函数baxf、)(.其中向量2)2π(R,),1,sin1(),cos,(fxxbxma且.(Ⅰ)求实数m的值;(Ⅱ)求函数)(xf的最小值.解:(Ⅰ)()(1sin)cosfxmxxab,πππ1sincos2222fm,得1m.(Ⅱ)由(Ⅰ)得π()sincos12sin14fxxxx,当πsin14x时,()fx的最小值为12.例9.已知ABC△的面积为3,且满足06ABAC≤≤,设AB和AC的夹角为.(I)求的取值范围;(II)求函数2()2sin3cos24fπ的最大解:(Ⅰ)设ABC△中角ABC,,的对边分别为abc,,,则由1sin32bc,0cos6bc≤≤,可得0cot1≤≤,ππ42,∴.(Ⅱ)2π()2sin3cos24fπ1cos23cos22(1sin2)3cos2πsin23cos212sin213.ππ42,∵,ππ2π2363,,π22sin2133∴≤≤.即当5π12时,max()3f;当π4时,min()2f.例10.(2007年广东卷理)已知ABC的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0)(1)若c=5,求sin∠A的值;(2)若∠A为钝角,求c的取值范围;解:(1)(3,4)AB,(3,4)ACc,若c=5,则(2,4)AC,∴6161coscos,5255AACAB,∴sin∠A=255;(2)∠A为钝角,则39160,0,cc解得253c,∴c的取值范围是25(,)3例11.(2007年山东卷文17)在ABC△中,角ABC,,的对边分别为tan37abcC,,,.(1)求cosC;(2)若52CBCA,且9ab,求c.分享智慧泉源智愛學習传扬爱心喜乐Wisdom&Love第5页(共12页)2020年7月23日星期四解:(1)sintan3737cosCCC,又22sincos1CC解得1cos8C.tan0C,C是锐角.1cos8C.(2)52CBCA,5cos2abC,20ab.又9ab22281aabb.2241ab.2222cos36cababC.6c.例12.(2006年湖北卷)设函数fxabc,其中向量sin,cos,sin,3cosaxxbxx,cos,sin,cxxxR.(Ⅰ)求函数xf的最大值和最小正周期;(Ⅱ)将函数xfy的图像按向量d平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d.命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a·(bc)=(sinx,-cosx)·(sinx-cosx,sinx-3cosx)=sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=2+2sin(2x+43).所以,f(x)的最大值为2+2,最小正周期是22=.(Ⅱ)由sin(2x+43)=0得2x+43=k.,即x=832k,k∈Z,于是d=(832k,-2),23()4,28kdk∈Z.因为k为整数,要使d最小,则只有k=1,此时d=(―8,―2)即为所求.例13.(2006年全国卷II)已知向量a=(sinθ,1),b=(1,cosθ),-π2<θ<π2.(Ⅰ)若a⊥b,求θ;(Ⅱ)求|a+b|的最大值.命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a⊥b,则sinθ+cosθ=0,由此得tanθ=-1(-π2<θ<π2),所以θ=-π4;(Ⅱ)由a=(sinθ,1),b=(1,cosθ)得|a+b|=(sinθ+1)2+(1+cosθ)2=3+2(sinθ+cosθ)分享智慧泉源智愛學習传扬爱心喜乐Wisdom&Love第6页(共12页)2020年7月23日星期四=3+22sin(θ+π4),当sin(θ+π4)=1时,|a+b|取得最大值,即当θ=π4时,|a+b|最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);ABC三动
本文标题:高中数学专题讲义练-第04讲--平面向量的解题技巧
链接地址:https://www.777doc.com/doc-6670773 .html