您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 平面几何中的向量方法
平面向量应用举例2.5.1平面几何中的向量方法向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。引入问题:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?,ACABAD,DBABADABCD猜想:1.长方形对角线的长度与两条邻边长度之间有何关系?2.类比猜想,平行四边形有相似关系吗?例1、证明平行四边形四边平方和等于两对角线平方和ABDC已知:平行四边形ABCD。求证:222222BDACDACDBCAB分析:因为平行四边形对边平行且相等,故设,其它线段对应向量用它们表示。bADaAB,例题ABDCbADaAB,解:设,则baDBbaACaDAbBC;,,)(2222222baDACDBCAB2222babaBDAC222222222222bababbaabbaa∴222222BDACDACDBCAB例题用向量法解平面几何问题的基本思路(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何元素。用向量方法解决平面几何问题的“三步曲”:简述:形到向量向量的运算向量和数到形想一想ABCDEFRT猜想:AR=RT=TC例2如图,ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?解:设则,,,ABaADbARrACab由于与共线,故设ARAC(),rnabnR又因为共线,所以设EREB与12()ERmEBmab因为所以ARAEER1122()rbmab1122()()nabbmab因此ABCDEFRT102()()mnmanb即,ab由于向量不共nmmn0102线,13nm解得:111333,,ARACTCACRTAC所以同理于是故AT=RT=TCABCDEFRT证明直径所对的圆周角是直角ABCO如图所示,已知⊙O,AB为直径,C为⊙O上任意一点。求证∠ACB=90°分析:要证∠ACB=90°,只须证向量即CBAC0CBAC解:设则,由此可得:bOCaAO,baCBbaAC,babaCBAC2222baba022rr即,∠ACB=90°0CBAC思考:能否用向量坐标形式证明?ab练习(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何元素。用向量方法解决平面几何问题的“三步曲”:小结课本习题2.5A组1,2作业
本文标题:平面几何中的向量方法
链接地址:https://www.777doc.com/doc-6686593 .html