您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 裂项相消法讲义【提高篇】
第1页共10页1、利用裂项相消法求和应注意:(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩几项,后面对称地也剩几项,且前面所剩项的符号与后边刚好相反,例如数列)2(1nn的求和。(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{an}是等差数列,则1anan+1=1d111nnaa,1anan+2=12d211nnaa2.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列an的通项公式,达到求解目的.归纳起来常见的命题角度有:(1)形如)11(1)(1knnkknn型。如1nn+1=1n-1n+1;(2)形如an=nknkknn11型;(3)形如an=12n-12n+1=)121121(21nn型;(4)形如an=n+1n2n+22型.(5)形如an=4n4n-14n+1-1=131411411nn型;(6)n+1n(n-1)·2n=2n-(n-1)n(n-1)·2n=1(n-1)2n-1-1n·2n.角度1形如an=1nn+k型;【例1】在等比数列{an}中,a10,n∈N*,且a3-a2=8,又a1、a5的等比中项为16.(1)求数列{an}的通项公式;(2)设bn=log4an,数列{bn}的前n项和为Sn,是否存在正整数k,使得1S1+1S2+1S3+…+1Snk对任意n∈N*恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.[解析](1)设数列{an}的公比为q,由题意可得a3=16,∵a3-a2=8,则a2=8,∴q=2.∴an=2n+1.(2)∵bn=log42n+1=n+12,∴Sn=b1+b2+…+bn=nn+34.第2页共10页∵1Sn=4nn+3=431n-1n+3,∴1S1+1S2+1S3+…+1Sn=43(11-14+12-15+13-16+…+1n-1n+3)=43(1+12+13-1n+1-1n+2-1n+3)431+12+13229,∴存在正整数k的最小值为3.2.已知数列{an}的前n项和Sn与通项an满足Sn=12-12an.(1)求数列{an}的通项公式;(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=1b1+1b2+…+1bn,求T2012;[解析](1)当n=1时,a1=13,当n≥2时,an=Sn-Sn-1,又Sn=12-12an,所以an=13an-1,即数列{an}是首项为13,公比为13的等比数列,故an=13n.(2)由已知可得f(an)=log313n=-n,则bn=-1-2-3-…-n=-nn+12,故1bn=-21n-1n+1,又Tn=-21-12+12-13+…+1n-1n+1=-21-1n+1,所以T2012=-40242013.变式1.在等差数列na中,31a,其前n项和为nS,等比数列nb的各项均为正数,11b,公比为q,且1222Sb,22bSq.(1)求na与nb;(2)设数列nc满足1nncS,求nc的前n项和nT.[解析](1)设na的公差为d.第3页共10页因为,,122222bSqSb所以.,qdqdq6126解得3q或4q(舍),3d.故3313nann,13nnb.(2)由(1)可知,332nnnS,所以122113331nncSnnnn.故21111121211322313131nnTnnnn…变式2.(2013·江西高考)正项数列{an}满足:a2n-(2n-1)an-2n=0.(1)求数列{an}的通项公式an;(2)令bn=1n+1an,求数列{bn}的前n项和Tn.[解析](1)由a2n-(2n-1)an-2n=0,得(an-2n)·(an+1)=0.由于{an}是正项数列,所以an=2n.(2)由an=2n,bn=1n+1an,得bn=12nn+1=121n-1n+1.Tn=121-12+12-13+…+1n-1-1n+1n-1n+1=121-1n+1=n2n+1.变式3.已知数列{an}的各项均为正数,前n项和为Sn,且Sn=anan+12,n∈N*.(1)求证:数列{an}是等差数列;(2)设bn=12Sn,Tn=b1+b2+…+bn,求Tn.[解析](1)证明∵Sn=anan+12,n∈N*,∴当n=1时,a1=S1=a1a1+12(an0),∴a1=1.当n≥2时,由2Sn=a2n+an,2Sn-1=a2n-1+an-1得2an=a2n+an-a2n-1-an-1.即(an+an-1)(an-an-1-1)=0,∵an+an-10,∴an-an-1=1(n≥2).所以数列{an}是以1为首项,1为公差的等差数列.(2)由(1)可得an=n,Sn=nn+12,第4页共10页bn=12Sn=1nn+1=1n-1n+1.∴Tn=b1+b2+b3+…+bn=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1.变式4.(12分)已知数列{an}的前n项和为Sn,且a1=1,an+1=12Sn(n=1,2,3,…).(1)求数列{an}的通项公式;(2)当bn=1233logna时,求证:数列1bnbn+1的前n项和Tn=n1+n.[解析](1)由已知得an+1=12Sn,an=12Sn-1(n≥2),得到an+1=32an(n≥2).∴数列{an}是以a2为首项,以32为公比的等比数列.又a2=12S1=12a1=12,∴an=a2×32n-2=1232n-2(n≥2).∴an=1,n=1,1232n-2,n≥2.(2)证明bn=log32(3an+1)=log3232·32n-1=n.∴1bnbn+1=1n1+n=1n-11+n.∴Tn=1b1b2+1b2b3+1b3b4+…+1bnbn+1=11-12+12-13+13-14+…+1n-11+n=1-11+n=n1+n.变式5.已知正项数列{an},{bn}满足a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,an,bn+1成等比数列.(1)求数列{bn}的通项公式;(2)设Sn=1a1+1a2+…+1an,试比较2Sn与2-b2n+1an+1的大小.[解析](1)∵对任意正整数n,都有bn,an,bn+1成等比数列,且{an},{bn}都为正项数第5页共10页列,∴an=bnbn+1(n∈N*).可得a1=b1b2=3,a2=b2b3=6,又{bn}是等差数列,∴b1+b3=2b2,解得b1=2,b2=322.∴bn=22(n+1).(2)由(1)可得an=bnbn+1=n+1n+22,则1an=2n+1n+2=21n+1-1n+2,∴Sn=212-13+13-14+…+1n+1-1n+2=1-2n+2,∴2Sn=2-4n+2,又2-b2n+1an+1=2-n+2n+3,∴2Sn-2-b2n+1an+1=n+2n+3-4n+2=n2-8n+2n+3.∴当n=1,2时,2Sn2-b2n+1an+1;当n≥3时,2Sn2-b2n+1an+1.角度2形如an=1n+k+n型【例2】已知函数f(x)=xa的图像过点(4,2),令an=1fn+1+fn,n∈N*.记数列{an}的前n项和为Sn,则S2013=________.[解析]由f(4)=2可得4a=2,解得a=12,则f(x)=x12.∴an=1fn+1+fn=1n+1+n=n+1-n,S2013=a1+a2+a3+…+a2013=(2-1)+(3-2)+(4-3)+…+(2014-2013)=2014-1.角度3形如an=12n-12n+1型;【例3】(2013·新课标卷Ⅰ)已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a2n+1的前n项和.[解析](1)设{an}的公差为d,则Sn=na1+nn-12d.由已知可得3a1+3d=0,5a1+10d=-5.解得a1=1,d=-1.故{an}的通项公式为an=2-n.(2)由(1)知1a2n-1a2n+1=13-2n1-2n=1212n-3-12n-1,第6页共10页从而数列1a2n-1a2n+1的前n项和为121-1-11+11-13+…+12n-3-12n-1=n1-2n.变式1.已知数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1)(n∈N*).(1)求数列{an}的通项公式;(2)设bn=2anan+1,求数列{bn}的前n项和Tn.[解析](1)∵Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)·an-1-(n-1)(n-2),∴an=Sn-Sn-1=nan-n(n-1)-(n-1)an-1+(n-1)·(n-2),即an-an-1=2.∴数列{an}是首项a1=1,公差d=2的等差数列,故an=1+(n-1)·2=2n-1,n∈N*.(2)由(1)知bn=2anan+1=22n-12n+1=12n-1-12n+1,故Tn=b1+b2+…+bn=311+5131+7151+…+121121nn=1-12n+1=2n2n+1.变式2.在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S2n=anSn-12.(1)求Sn的表达式;(2)设bn=Sn2n+1,求{bn}的前n项和Tn.[解析](1)∵S2n=anSn-12,an=Sn-Sn-1(n≥2),∴S2n=(Sn-Sn-1)Sn-12,即2Sn-1Sn=Sn-1-Sn,①由题意Sn-1·Sn≠0,①式两边同除以Sn-1·Sn,得1Sn-1Sn-1=2,∴数列1Sn是首项为1S1=1a1=1,公差为2的等差数列.∴1Sn=1+2(n-1)=2n-1,∴Sn=12n-1.第7页共10页(2)又bn=Sn2n+1=12n-12n+1=1212n-1-12n+1,∴Tn=b1+b2+…+bn=12[(1-13)+(13-15)+…+(12n-1-12n+1)]=121-12n+1=n2n+1.变式3.已知数列{an}前n项和为Sn,首项为a1,且12,an,Sn成等差数列.(1)求数列{an}的通项公式;(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求证:1b1+1b2+1b3+…+1bn12.(1)解∵12,an,Sn成等差数列,∴2an=Sn+12,当n=1时,2a1=S1+12,∴a1=12,当n≥2时,Sn=2an-12,Sn-1=2an-1-12,两式相减得an=Sn-Sn-1=2an-2an-1,∴anan-1=2,∴数列{an}是首项为12,公比为2的等比数列,∴an=12×2n-1=2n-2.(2)证明bn=(log2a2n+1)×(log2a2n+3)=log222n+1-2×log222n+3-2=(2n-1)(2n+1),1bn=12n-1×12n+1=12(12n
本文标题:裂项相消法讲义【提高篇】
链接地址:https://www.777doc.com/doc-6689857 .html