您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 第三讲--正方形的性质与判定例题精讲和练习题及答案---侯老师--
FEDCBA第三讲正方形的性质与判定一、知识要点1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质:1边的性质:对边平行,四条边都相等.2角的性质:四个角都是直角.3对角线性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角.4对称性:正方形是中心对称图形,也是轴对称图形.平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定1:对角线相等的菱形是正方形2:对角线互相垂直的矩形是正方形,正方形是一种特殊的矩形3:四边相等,有一个角是直角的四边形是正方形4:一组邻边相等的矩形是正方形5:一组邻边相等且有一个角是直角的平行四边形是正方形二、典型例题例1如图12-2-14,已知过正方形ABCD对角线BD上一点P,作PE⊥BC于E,作PF⊥CD于F.试说明AP=EF.分析:由PE⊥BC,PF⊥CD知,四边形PECF为矩形,故有EF=PC,这时只需证AP=CP,由正方形对角线互相垂直平分知AP=CP.解:连结AC、PC,∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.正方形菱形矩形平行四边形∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.注意:①在正方形中,常利用对角线互相垂直平分证明线段相等.②无论是正方形还是矩形经常通过连结对角线证题,这样可以使分散条件集中.思考:由上述条件是否可以得到AP⊥EF.提示:可以,延长AP交EF于N,由PE∥AB,有∠NPE=∠BAN.又∠BAN=∠BCP,而∠BCP=∠PFE,故∠NPE=∠PFE,而∠PFE+∠PEF=90°,所以∠NPE+∠PEF=90°,则AP⊥EF.例2如图12-2-15,△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,试说明四边形BEDF是正方形.解:∵∠ABC=90°,DE⊥BC,∴DE∥AB,同理,DF∥BC,∴BEDF是平行四边形.∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF.又∵∠ABC=90°,BEDF是平行四边形,∴四边形BEDF是正方形.思考:还有没有其他方法?提示:(有一种方法可以证四边形DFBE为矩形,然后证BE=DE,可得.另一种方法,可证四边形DFBE为菱形,后证一个角为90°可得)注意:灵活选择正方形的识别方法.例3如图12-2-16所示,四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的大小.分析:等边三角形和正方形都能提供大量的线段相等和角相等,常能产生一些等腰三角形,十分便于计算.在本题中,必须注意等边三角形与正方形不同的位置关系.在(1)图中,△ABE和△DCE都是等腰三角形,顶角都是150°,可得底角∠AEB与∠DEC都是15°,则∠BEC为30°.而在(2)图中,等边三角形在正方形内部,△ABE和△DCE是等腰三角形,顶角是30°,可得底角∠AEB和∠DEC为75°,再利用周角可求得∠BEC=150°.解:(1)当等边△ADE在正方形ABCD外部时,AB=AE,∠BAE=90°+60°=150°,所以∠AEB=15°.同理可得∠DEC=15°,则∠BEC=60°-15°-15°=30°.(2)当等边△ADE在正方形ABCD内部时,AB=AE,∠BAE=90°-60°=30°,所以∠AEB=75°.同理可得∠DEC=75°,则∠BEC=360°-75°-75°-60°=150°.【中考考点】会用正方形的性质来解决有关问题,并能用正方形的定义来判断四边形是否为正方形.【命题方向】本节出题比较灵活,填空题、选择题、证明题均可出现.正方形是特殊的平行四边形,考查正方形的内容,实质上是对平行四边形知识的综合,涉及正方形知识的题型较多,多以证明题形式出现.【常见错误分析】已知如图12-2-18,△ABC中,∠C=90°,分别以AC和BC为边向外作正方形ACFH和正方形BCED,HM⊥BA的延长线于M,DK⊥AB的延长线于K.试说明AB=DK+HM.错解:延长DK到S,使KS=HM,连结SB.∵∠2=∠3,∠2+∠4=90°,∴∠3+∠4=90°.在△ABC和△SDB中,∵∠ACB=∠SBD=90°,BC=BD,∠2=90°-∠4=∠5∴△ABC与△SDB重合,∴AB=SD=SK+DK,即AB=HM+DK.分析指导:由于S、B、C三点共线未经证明,所以∠2=∠3的理由是不充足的,因此又犯了思维不严密的错误.正解:如图12-2-18,延长DK交CB延长线于S,下面证KS=MH.在△ACB和△SBD中,∵BD=BC,∠SBD=∠ACB=90°,又∠2=∠3=∠5,∴△ACB与△SBD重合,∴AB=DS,BS=AC=AH.在△BKS和△AMH中,∵∠1=∠2=∠3,∠AMH=∠SKB=90°,BS=AH,∴△BKS与△AMH重合,∴KS=HM,∴AB=DK+HM.【学习方法指导】正方形是最特殊的平行四边形,它既是一组邻边相等的矩形,又是有一个角为直角的菱形,所以它的性质最多,易混淆.故最好把平行四边形、矩形、菱形、正方形列表写出它们的定义、性质、判定,这样更容易记忆和区分.三、作业正方形的判定一.选择题(共8小题)1.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④2.下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直3.下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1组B.2组C.3组D.4组5.四边形ABCD的对角线AC=BD,AC⊥BD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形6.如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分7.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形8.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF二.填空题(共6小题)9.能使平行四边形ABCD为正方形的条件是_________(填上一个符合题目要求的条件即可).10.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_________时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)11.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:_________,使得该菱形为正方形.12.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_________.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是_________.14.要使一个菱形成为正方形,需添加一个条件为_________.三.解答题(共8小题)15.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F.求证:四边形DEBF是正方形.16.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.17.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.18.如图,在△ABC中,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形.(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.19.如图,分别以线段AB的两个端点为圆心,大于AB的长为半径作弧,两弧交于M、N两点,连接MN,交AB于点D、C是直线MN上任意一点,连接CA、CB,过点D作DE⊥AC于点E,DF⊥BC于点F.(1)求证:△AED≌△BFD;(2)若AB=2,当CD的值为_________时,四边形DECF是正方形.20.如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥AC,MF⊥AD,垂足分别为E、F.(1)求证:∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.21.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处时,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE_________是菱形吗?(填“可能”或“不可能”)22.已知:如图,△ABC中,点O是AC上的一动点,过点O作直线MN∥AC,设MN交∠BCA的平分线于点E,交∠BCA的外角∠ACG的平分线于点F,连接AE、AF.(1)求证:∠ECF=90°;(2)当点O运动到何处时,四边形AECF是矩形?请说明理由;(3)在(2)的条件下,△ABC应该满足条件:_________,就能使矩形AECF变为正方形.(直接添加条件,无需证明)参考答案与试题解析一.选择题(共8小题)1.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.2.下列说法中,正
本文标题:第三讲--正方形的性质与判定例题精讲和练习题及答案---侯老师--
链接地址:https://www.777doc.com/doc-6691388 .html