您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 13.3-等腰三角形的性质(课件)
13.3.1等腰三角形图中有些你熟悉的图形吗?图中有些你熟悉的图形吗?它们有什么共同特点?北京五塔寺西安半坡博物馆斜拉桥梁体育观看台架埃及金字塔ACB腰腰底边顶角底角底角有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.条件AB=ACCA=CBAC=AD腰底边底角AB、ACBC∠B、∠CCA、CBAC∠A、∠BAC、AD∠ACD、∠ADCDC图形顶角∠A∠C∠CAD写一写1、动手操作:用一张长方形纸片,折剪一个等腰三角形。(只剪一刀)动手做一做ACB看一看2、想一想:(1)剪出的三角形是等腰三角形吗?并指出其中的腰、底边、顶角、底角。(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?(3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?ABC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?AC(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没有重合的部分?并指出重合的部分是什么?你发现了什么?结论2:等腰三角形的两底角相等结论1:等腰三角形是轴对称图形性质1、等腰三角形的两个底角相等。(等边对等角)ABCD已知:△ABC中,AB=AC证明:作底边BC边上的中线AD。在△ABD与△ACD中:AB=AC(已知)BD=DC(作图)AD=AD(公共边)∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)ABC性质1的应用格式:∵AB=AC(已知)∴∠B=∠C(等边对等角)求证:∠B=∠C。方法一:作顶角∠BAC的平分线AD。∵AD平分∠BAC∴∠1=∠2在△ABD与△ACD中AB=AC(已知)∠1=∠2(已证)AD=AD(公共边)∴△ABD≌△ACD(SAS)∴∠B=∠CACB`D方法二:作底边BC的高AD。∵AD⊥BC∴∠ADB=∠ADC=90°在△ABD与△ACD中∠ADB=∠ADC=90°AB=AC(已知)AD=AD(公共边)∴△ABD≌△ACD(HL)∴∠B=∠C112ABCD议一议:说说为什么在添加辅助时,作顶角平分线,底边中线,底边高都能使分成的两个三角形全等?性质2:等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合。(通常说成等腰三角形的“三线合一”)性质2可分解成下面三个方面来理解:1、等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。应用格式:∵AB=AC∠1=∠2(已知)∴BD=DCAD⊥BC(等腰三角形三线合一)2、等腰三角形的底边上中线,既是底边上的高,又是顶角平分线。应用格式:∵AB=ACBD=DC(已知)∴AD⊥BC∠1=∠2(等腰三角形三线合一)3、等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。应用格式:∵AB=ACAD⊥BC(已知)∴BD=DC∠1=∠2(等腰三角形三线合一)ABCD21·→画出任意一个等腰三角形的底角平分线、腰上的中线和高,看看它们是否重合?ABCDEFABCD“三线合一”应该对应等腰三角形的顶角平分线,底边上的中线和底边上的高理解三线合一1.等腰三角形是轴对称图形ABCD2.等腰三角形两个底角相等,简写成“等边对等角”3.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合简称“三线合一”1、练一练(基础训练)。(1)已知等腰三形的一个顶角为36°,则它的两个底角分别为。(2)已知等腰三角形的一个角为40°,则其它两个角分别为或。(3)已知等腰三角形的一个外角为70°,则这个三角形的三个内角分别为。(4)等腰三角形一腰为3cm,底为4cm,则它的周长是;10cm72°、72°70°、70°40°、100°110°、35°、35°(5)等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是;10cm或11cm(6)等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是。19cm2、如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC,,立柱AD⊥BC.已知∠B=30°,BC=6m,那么:∠BAC=-----------,BD=-----------120°3m3:△ABC中,AB=AC,D是BC边上的中点,DF⊥AC于FDE⊥AB于E.求证:DE=DFABCDEF证明:∵DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD又∵D是BC中点(已知)∴BD=DC∵AB=AC(已知)∴∠B=∠C(等边对等角)在△DBE与△DCF中∠DEB=∠DFC(已证)∠B=∠C(已证)BD=DC(已证)∴△BDE≌△CDF(AAS)∴DE=DF小结:通过本节课的学习,谈谈你的收获及疑惑1、本节主要教学知识是等腰三角形的两个性质。等腰三角形的性质内容应用格式性质1ABC性质2ABC等腰三角形的两个底角相等等腰三角形的顶角平分线、底边上的中线底边上的高互相重合。∵AB=AC(已知)∴∠B=∠C(等边对等角)①∵AB=AC,∠1=∠2(已知)∴BD=DC,AD⊥BC(三线合一)②∵AB=AC,BD=DC(已知)∴∠1=∠2,AD⊥BC(三线合一)③∵AB=AC,AD⊥BC(已知)∴∠1=∠2,BD=DC(三线合一)D122、本节课学习了数学思想及方法:分类讨论和一题多解。在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。——毕达哥拉斯
本文标题:13.3-等腰三角形的性质(课件)
链接地址:https://www.777doc.com/doc-6702313 .html