您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 能被11、7整除的数的特征
钟晓萱把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。例如:判断491678能不能被11整除。—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。这种方法叫“奇偶位差法”。除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33,33能被11整除,583也一定能被11整除.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。总结:我们要牢记能被n个特殊数整除的特征,归纳出一般性的规律。(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。
本文标题:能被11、7整除的数的特征
链接地址:https://www.777doc.com/doc-6733094 .html