您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 函数及其基本性质知识点总结
1〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()fx和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:fAB.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,ab是两个实数,且ab,满足axb的实数x的集合叫做闭区间,记做[,]ab;满足axb的实数x的集合叫做开区间,记做(,)ab;满足axb,或axb的实数x的集合叫做半开半闭区间,分别记做[,)ab,(,]ab;满足,,,xaxaxbxb的实数x的集合分别记做[,),(,),(,],(,)aabb.注意:对于集合{|}xaxb与区间(,)ab,前者a可以大于或等于b,而后者必须ab.(3)求函数的定义域时,一般遵循以下原则:①()fx是整式时,定义域是全体实数.②()fx是分式函数时,定义域是使分母不为零的一切实数.③()fx是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tanyx中,()2xkkZ.⑥零(负)指数幂的底数不能为零.2⑦若()fx是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()fx的定义域为[,]ab,其复合函数[()]fgx的定义域应由不等式()agxb解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()yfx可以化成一个系数含有y的关于x的二次方程2()()()0ayxbyxcy,则在()0ay时,由于,xy为实数,故必须有2()4()()0byaycy,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:fAB.3yxo②给定一个集合A到集合B的映射,且,aAbB.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.x..2.时,都有f(x...1.)f(x.....2.).,那么就说f(x)在这个区间上是增函数....x1x2y=f(X)xyf(x)1f(x)2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.x..2.时,都有f(x...1.)f(x.....2.).,那么就说f(x)在这个区间上是减函数....y=f(X)yxoxx2f(x)f(x)211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]yfgx,令()ugx,若()yfu为增,()ugx为增,则[()]yfgx为增;若()yfu为减,()ugx为减,则[()]yfgx为增;若()yfu为增,()ugx为减,则[()]yfgx为减;若()yfu为减,()ugx为增,则[()]yfgx为减.(2)打“√”函数()(0)afxxax的图象与性质()fx分别在(,]a、[,)a上为增函数,分别在[,0)a、(0,]a上为减函数.(3)最大(小)值定义4①一般地,设函数()yfx的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有()fxM;(2)存在0xI,使得0()fxM.那么,我们称M是函数()fx的最大值,记作max()fxM.②一般地,设函数()yfx的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有()fxm;(2)存在0xI,使得0()fxm.那么,我们称m是函数()fx的最小值,记作max()fxm.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数()fx为奇函数,且在0x处有定义,则(0)0f.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.5高考《函数及其基本性质》考点解析考点一:函数定义域1、函数2211yxx的定义域是()A.1,1B.(-1,1)C.[-1,1]D.(-∞,-1)∪(1,+∞)2、11232yxxx考点二:函数值域1、①31yx,x∈{1,2,3,4,5}(观察法)②246yxx,x∈1,5(配方法:形如2yaxbxc)③21yxx(换元法:形如yaxbcxd)④1xyx(分离常数法:形如cxdyaxb)⑤221yxx(判别式法:形如21112222axbxcyaxbxc)2、设函数2()2()gxxxR,222,()()2,()xxxgxfxxxxgx,则()fx的值域是(A)9,0(1,)4(B)[0,)(C)9[,)4(D)9,0(2,)4考点三:分段函数1、已知函数510320xxxxfx,求f(1)+f(1)的值2、已知函数2122111fxxxxxxfx,求f[f(4)]的值3、已知函数232,1,(),1,xxfxxaxx若((0))4ffa,则实数a=.64、已知函数21,0()1,0xxfxx,则满足不等式2(1)(2)fxfx的x的范围是__考点四:函数单调性(最值)、函数奇偶性1.如果函数2()2(1)2fxxax在区间(,4]上是减函数,那么实数a的取值范围是.2.如果二次函数2()1)5fxxax(在区间1(,1)2上是增函数,(2)f的取值范围.3.(2008全国Ⅱ)函数1()fxxx的图像关于()A.y轴对称B.直线xy对称C.坐标原点对称D.直线xy对称4.二次函数21yxmx是偶函数,则函数的增区间为()A.[0,)B.(,0]C.[1,)D.[1,)5.下列函数中,是奇函数且在(0,)上为增函数的是()A.3yxxB.1yxxC.1yxxD.3yx6.(2007年宁夏)设函数xaxxxf1为奇函数,则实数a.7.若函数1,0(),0xxfxaxbx为偶函数,则()fab.8.已知偶函数()fx在(0,)上为增函数,且(2)0f,解不等式:(23)0fx.9.设奇函数()fx在(0),上为增函数,且(1)0f,则()0fx的解集为()A.(1,)B.(,1)(0,1)C.(,1)D.(1,)(,1)10.设偶函数()fx在),0[上为减函数,则不等式()(21)fxfx的解集是11.函数2()fxxx在区间[2,3]上的最大值为.二次函数问题、函数图像问题等考点均渗透在以上考点中。
本文标题:函数及其基本性质知识点总结
链接地址:https://www.777doc.com/doc-6745572 .html