您好,欢迎访问三七文档
二次函数知识点1、二次函数定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数.2、二次函数的解析式有三种形式:(1)一般式:)0,,(2acbacbxaxy是常数,(2)顶点式:)0,,()(2akhakhxay是常数,(3)当抛物线cbxaxy2与x轴有交点时,即对应二次好方程02cbxax有实根1x和2x存在时,根据二次三项式的分解因式))((212xxxxacbxax,二次函数cbxaxy2可转化为两根式))((21xxxxay。如果没有交点,则不能这样表示。3、二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线.4、二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,.5、二次函数由特殊到一般,可分为以下几种形式:①2axy;②kaxy2;③2hxay;④khxay2;⑤cbxaxy2.6、抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作hx.特别地,y轴记作直线0x.7、顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8、求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,∴顶点是),(abacab4422,对称轴是直线abx2.(2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线hx.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9、抛物线cbxaxy2中,cba,,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线abx2,故:①0b时,对称轴为y轴;②0ab(即a、b同号)时,对称轴在y轴左侧;③0ab(即a、b异号)时,对称轴在y轴右侧.(3)c的大小决定抛物线cbxaxy2与y轴交点的位置.当0x时,cy,∴抛物线cbxaxy2与y轴有且只有一个交点(0,c):①0c,抛物线经过原点;②0c,与y轴交于正半轴;③0c,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0ab.10、几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)11、用待定系数法求二次函数的解析式(1)一般式:cbxaxy2.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:khxay2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay.12、直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为(0,c).(2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2).(3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x轴上)0抛物线与x轴相切;③没有交点0抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根.(5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定:①方程组有两组不同的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,,,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121【例题经典】由抛物线的位置确定系数的符号例1(1)二次函数2yaxbxc的图像如图1,则点),(acbM在()A.第一象限B.第二象限C.第三象限D.第四象限(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()A.1个B.2个C.3个D.4个(1)(2)【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键。例2.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,O)、(x1,0),且1x12,与y轴的正半轴的交点在点(O,2)的下方.下列结论:①ab0;②2a+cO;③4a+cO;④2a-b+1O,其中正确结论的个数为()A1个B.2个C.3个D.4个答案:D会用待定系数法求二次函数解析式例3、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=-2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为()A(2,-3)B.(2,1)C(2,3)D.(3,2)答案:C例4、如图(单位:m),等腰三角形ABC以2米/秒的速度沿直线L向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ym2.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?求抛物线顶点坐标、对称轴.例5、已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.例6、已知:二次函数y=ax2-(b+1)x-3a的图象经过点P(4,10),交x轴于)0,(1xA,)0,(2xB两点)(21xx,交y轴负半轴于C点,且满足3AO=OB.(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点M,使锐角∠MCO∠ACO?若存在,请你求出M点的横坐标的取值范围;若不存在,请你说明理由.(1)解:如图∵抛物线交x轴于点A(x1,0),B(x2,O),则x1·x2=30,又∵x1x2,∴x2O,x1O,∵30A=OB,∴x2=-3x1.∴x1·x2=-3x12=-3.∴x12=1.x10,∴x1=-1.∴.x2=3.∴点A(-1,O),P(4,10)代入解析式得解得a=2b=3∴.二次函数的解析式为y-2x2-4x-6.(2)存在点M使∠MC0∠ACO.(2)解:点A关于y轴的对称点A’(1,O),∴直线A,C解析式为y=6x-6直线A'C与抛物线交点为(0,-6),(5,24).∴符合题意的x的范围为-1x0或Ox5.当点M的横坐标满足-1xO或Ox5时,∠MCO∠ACO.例7、“已知函数cbxxy221的图象经过点A(c,-2),,求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由。(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。[解答](1)根据cbxxy221的图象经过点A(c,-2),图象的对称轴是x=3,得,3212,2212bcbcc解得.2,3cb所以所求二次函数解析式为.23212xxy图象如图所示。(2)在解析式中令y=0,得023212xx,解得.53,5321xx所以可以填“抛物线与x轴的一个交点的坐标是(3+)0,5”或“抛物线与x轴的一个交点的坐标是).0,53(。令x=3代入解析式,得,25y所以抛物线23212xxy的顶点坐标为),25,3(所以也可以填抛物线的顶点坐标为)25,3(等等。函数主要关注:通过不同的途径(图象、解析式等)了解函数的具体特征;借助多种现实背景理解函数;将函数视为“变化过程中变量之间关系”的数学模型;渗透函数的思想;关注函数与相关知识的联系。用二次函数解决最值问题例1、已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4),易知CN=4-x,EM=4-y,且有,即,∴,S=xy=(2≤x≤4)此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值是随x的增大而增大,对2≤x≤4来说,当x=4时,S有最大值,S最大=。例2、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?【解析】(1)设此一次函数表达式为y=kx+b.则1525,220kbkb解得k=-1,b=40,即一次函数表达式为y=-x+40.(2)设每件产品的销售价应定为x元,所获销售利润为w元w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.产品的销售价应定为25元,此时每日获得最大销售利润为225元.二次函数对应练习试题一、选择题1.二次函数247yxx的顶点坐标是()A.(2,-11)B.(-2,7)C.(2,11)D.(2,-3)2.把抛物线22yx向上平移1个单位,得到的抛物线是()A.22(1)yxB.22(1)yxC.221yxD.221yx3.函数2ykxk和(0)kykx在同一直角坐标系中图象可能是图中的()4.已知二次函数2(0)yaxbxca的图象如图所示,则下列结论:①a,b同号;②当1x和3x时,函数值相等;③40ab④当2y时,x的值只能取0.其中正确的个数是()A.1个B.2个C.3个D.4个5.已知二次函数2(0)yaxbxca的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的一元二次方程20axbxc的两个根分别是121.3xx和()A.-1.3B.-2.3C.-0.3D.-3.36.已知二次函数2yaxbxc的图象如图所示,则点(,)acbc在()A.第一象限B.第二象限C.第三象限D.第四象限7.
本文标题:浙教版二次函数专题
链接地址:https://www.777doc.com/doc-6745710 .html