您好,欢迎访问三七文档
第二课堂工作室解决小学数学中难等题目的关键-----学会和差倍问题及其解法1、和差倍问题分类及其解法和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数图解关键问题求出同一条件下的和与差和与倍数差与倍数2、和差倍问题的学法在初学和差倍问题时,很多同学习惯记公式解题,也有些老师只要求学生记公式、背公式,但真正要学习好和差倍问题,只会记公式、背公式,用公式解题是远远不够的。解这一类问题,要公式与图解对应理解,会用图解推理公式,会用公式画出图解;会在图解的基础上分析量与量这间关系,只有这样,和差倍问题才算是基本掌握好,才可以熟练地用这些方法去探索更为复杂的问题。(1)会根据题设条件区分三种基本类型,并运用相应的公式解决相关的问题;(2)会根据题设条件画出相对应的线段图;(3)会用图示法列出题设条件中的数量关系;(4)会根据线段图或图示法中的数量找量与量之间的变化关系;3、方法示范这里我们只选3道题作代表,分别从题型及思维方法、解题方法上面作简单的介绍,给学生一个简单的参照。范例1、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?分析:设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班和乙班图书本数的和相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:第二课堂工作室解:乙班:160÷(3+1)=40(本)甲班:40×3=120(本)或160-40=120(本)答:甲班有图书120本,乙班有图书40本。范例2、549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?分析:从线段图可以看出,丙数最小.由于丙数乘以2和丁数除以2相等,也就是丙数的2倍和丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。解:①丙数是:(549+2-2)÷(2+2+1+4)=549÷9=61②甲数是:61×2-2=120③乙数是:61×2+2=124④丁数是:61×4=244答:甲、乙、丙、丁分别是120、124、61、244.范例3、小明、小红、小玲共有73块糖.如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍.问小红有多少块糖?用文字图示的方法找数量间的关系有小红+小玲+小明=小红+(小红+3)+(2小红-6)=4小红-3=73.解:小红有糖(73+3)÷4=19块.答:小红有19块糖。分析:小玲比小红多3块糖,小明糖数再增加2就等于小红糖数减少2后2倍,所以小明的糖数是小红的2倍少6颗,用文字图示的方法找数量间的关系有小红+小玲+小明=小红+(小红+3)+(2小红-6)=4小红-3=73.解:小红有糖(73+3)÷4=19块.答:小红有19块糖。用文字图示的方法找数量间的关系有小红+小-3=73.玲+小明=小红+(小红+3)+(2小红-6)=4小红解:小红有糖(73+3)÷4=19块.答:小红有19块糖。第二课堂工作室1、甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有书多少本?2、某小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?3、大白兔和小灰兔共采摘了蘑菇160个,后来大白兔吃了20个,而小灰兔又采了10个,这时,大白兔的蘑菇是小灰兔的蘑菇的5倍,原来小灰兔采了多少个蘑菇?4、甲、乙、丙、丁4个数的和是549,如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等求4个数各是多少?5、某小学开展冬季体育比赛,参加跳绳比赛的人数是踺子人数的3倍,比踢踺子的多36人。参加跳绳和踢踺子比赛的各有多少人?6、已知两个数相除的商为4,相减的差是39,者两个数分别为多少?第二课堂工作室7、仓库里存放大米和面粉两种粮食,面粉比大米多3900千克,面粉的千克数比大米的2倍还多100千克。仓库有大米和面粉各多少千克?8、两根绳,第一根长64米,第二根长52米,剪去同样长后,第一根是第二根的3倍,每根绳剪去多少米?9、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。分析:要点:先把一,二小组看成一个整体!把第三小组看成一个整体,我们把这种方法叫“化三为二”即把三个问题转换成二个问题,先求出第一,二小组的人数,再求出第一小组的人数。这也是一个和差问题。10、250名学生参加联欢会,第一个到会的女同学同全部男生握过手,第二个到会的女生只差一个男生没握过手,第三个到会的女生只差2个男生没握过手,以此类推,最后一个到会的女生同7个男生握过手。问这些学生中有多少名男生?分析:这是和差问题。我们可以这样想:如果这个班再多6个女生的话,最后一个女生就应该只与1个男生握手,这时,男生和女生一样多了,所以原来男生比女生多(7-1)6个人!
本文标题:和差倍问题及其解法
链接地址:https://www.777doc.com/doc-6763007 .html