您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一元二次方程的解法---公式法
对于方程(2)方程两边同除以a,得.(1)将常数项移到方程的左边,得.(3)方程两边同时加上_______,得左边写成完全平方式,右边通分,得(4)开平方…用配方法解200axbxca().∵a≠0,4a20,∴当b2-4ac≥0时,∴∴特别提醒推导时必须写240bac24bac一元二次方程20(0)axbxca解的情况由决定:(1)当时,方程有两个不相等的实数根;240bac(2)当时,方程有两个相等的实数根;240bac(3)当时,方程没有实数根.根的判别式一元二次方程20(0)axbxca.的根由方程的系数a,b,c确定.240bac242bbacxa将a,b,c代入式子当解一元二次方程时,可以先将方程化为一般形式由求根公式可知,一元二次方程最多有两个实数根.一元二次方程的求根公式利用它解一元二次方程的方法叫做公式法,时,例1.用公式法解方程2x2+5x-3=0解:a=2,b=5,c=-3,∴b2-4ac=52-4×2×(-3)=491、把方程化成一般形式。并写出a,b,c的值。2、求出b2-4ac的值。∴x===即x1=-3,用公式法解一元二次方程的一般步骤:求根公式:X=4、写出方程的解:x1=?,x2=?3、代入求根公式:X=(a≠0,b2-4ac≥0)(a≠0,b2-4ac≥0)①②③④x2=填空:用公式法解方程3x2+5x-2=0解:a=,b=,c=.b2-4ac==.x==.=.即x1=,x2=.35-252-4×3×(-2)49-2求根公式:X=1.用公式法解下列方程:(1)x2+2x=5(a≠0,b2-4ac≥0)做一做例2用公式法解方程:x2–x-=0解:方程两边同乘以3,得2x2-3x-2=0∴x=即x1=2,x2=-例3用公式法解方程:x2+3=2x解:移项,得x2-2x+3=0a=1,b=-2,c=3b2-4ac=(-2)2-4×1×3=0∴x=x1=x2=====当时,一元二次方程有两个相等的实数根。b2-4ac=0a=2,b=-3,c=-2.∴b2-4ac=(-3)2-4×2×(-2)=25.2.用公式法解下列方程:(4)4x2-3x+2=0随堂练习当时,一元二次方程没有实数根。b2-4ac<0解:去括号,化简为一般式:242bbacxa例4解方程:2136xx23780xx这里3a、b=-7、c=822474384996470bac-()方程没有实数解。用公式法解一元二次方程的一般步骤:242bbacxa3、代入求根公式:2、求出的值,24bac1、把方程化成一般形式,并写出的值。ab、、c4、写出方程的解:12xx、特别注意:当时,方程无实数解;240bac求根公式:X=一、由配方法解一般的一元二次方程ax2+bx+c=0(a≠0)若b2-4ac≥0得这是收获的时刻,让我们共享学习的成果这是收获的时刻,让我们共享学习的成果二、用公式法解一元二次方程的一般步骤:1、把方程化成一般形式。并写出a,b,c的值。2、求出b2-4ac的值。3、代入求根公式:X=(a≠0,b2-4ac≥0)4、写出方程的解:x1=?,x2=?课堂心得本节课我有哪些收获?我认为本节课的重点是什么?想一想记一记问一问我还有哪些疑点?课下可要多交流呦!•解一元二次方程时应先化为一般形式,然后利用公式法求得方程的根.这是解一元二次方程的通法.•用公式法解一元二次方程时,必须把方程化为一般形式才能正确确定出a、b、c.在代入公式求解前,要先计算b2-4ac的值.一元二次方程根的判别式两个不相等实根两个相等实根无实数根(1)(2)(3)>0=0<0(4)<0≥0两个实数根两个不相等实根两个相等实根无实数根(1)(2)(3)(4)3、练习:用公式法解方程:x2-2x+2=0.1、方程3x2+1=2x中,b2-4ac=.2、若关于x的方程x2-2nx+3n+4=0有两个相等的实数根,则n=.动手试一试吧!0-1或41、m取什么值时,方程x2+(2m+1)x+m2-4=0有两个相等的实数解思考题思考题2、关于x的一元二次方程ax2+bx+c=0(a≠0)。当a,b,c满足什么条件时,方程的两根为互为相反数?应用1.不解方程判断方程根的情况:(1)x2-2kx+4(k-1)=0(k为常数)(2)x2-(2+m)x+2m-1=0(m为常数)=4(k2-4k+4)=4(k-2)2解:△=4k2-16k+16∴△0方程有两个不等实根解:△=m2-4m+8=m2-4m+4+4=(m-2)2+4∴△≥0方程有实根含有字母系数时,将△配方后判断1、不解方程,判断根的情况.(1)2x2-4x-5=0;(2)x2-(m+1)x+m=0.224(4)42(5)bac=560∴方程有两个不相等的实数根;224(1)41bacmm2214mmm2(1)m∴当m-1=0时,≥0方程有两个相等的实数根;方程有两个不相等的实数根;当m-1≠0时,解:解:(1)、若关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,则m的取值范围是()A、m﹥0B、m≥0C、m﹥0且m≠1Dm≥0且m≠1解:由题意,得m-1≠0①⊿=(-2m)2-4(m-1)m≥0②解之得,m﹥0且m≠1,故应选DD应用2:根据方程根的情况判断某一字母取值范围(3)m为何值时,关于x的一元二次方程m2x2+(2m+1)x+1=0有两个不等实根?解:△=(2m+1)2-4m2=4m+1若方程有两个不等实根,则△0∴4m+10∴m-1/4对吗?∴m-1/4且m≠0注意二次项系数
本文标题:一元二次方程的解法---公式法
链接地址:https://www.777doc.com/doc-6785217 .html