您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 20162017学年广东省深圳市南山区高一上期末数学试卷
小明文库页(共15页)2016-2017学年广东省深圳市南山区高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(∁UA)∩B等于()A.{0,4}B.{0,3,4}C.{0,2,3,4}D.{2}2.(5分)函数y=1﹣2x的值域为()A.[1,+∞)B.(1,+∞)C.(﹣∞,1]D.(﹣∞,1)3.(5分)直线3x+y+1=0的倾斜角是()A.30°B.60°C.120°D.150°4.(5分)如图是一个几何体的三视图,则该几何体的体积为()A.9πB.18πC.27πD.54π5.(5分)下列函数中既是偶函数,又在(0,+∞)上单调递减的为()A.B.y=x﹣2C.D.y=x26.(5分)已知直线l1:3x+2y+1=0,l2:x﹣2y﹣5=0,设直线l1,l2的交点为A,则点A到直线的距离为()A.1B.3C.D.7.(5分)方程的实数根的所在区间为()A.(3,4)B.(2,3)C.(1,2)D.(0,1)8.(5分)计算其结果是()小明文库页(共15页)A.﹣1B.1C.﹣3D.39.(5分)已知b>0,log3b=a,log6b=c,3d=6,则下列等式成立的是()A.a=2cB.d=acC.a=cdD.c=ad10.(5分)已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a∥α,a∥β,b∥α,b∥β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a∥β,b∥α;④存在一个平面γ,使得γ⊥α,γ⊥β.其中可以推出α∥β的条件个数是()A.1B.2C.3D.411.(5分)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)12.(5分)定义函数序列:,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)函数y=+1g(x﹣1)的定义域是.14.(5分)设函数f(x)=,则方程f(x)=2的所有实数根之和为.15.(5分)设点A(﹣5,2),B(1,4),点M为线段AB的中点.则过点M,且与直线3x+y﹣2=0平行的直线方程为.16.(5分)下列命题中①若loga3>logb3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);小明文库页(共15页)③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)在正方体ABCD﹣A1B1C1D1中:(Ⅰ)求证:AC∥平面A1BC1;(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.18.(12分)已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直.(Ⅰ)若,且点P在函数的图象上,求直线l的一般式方程;(Ⅱ)若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.19.(12分)已知函数(其中a为非零实数),且方程有且仅有一个实数根.(Ⅰ)求实数a的值;(Ⅱ)证明:函数f(x)在区间(0,+∞)上单调递减.20.(12分)研究函数的性质,并作出其图象.21.(12分)已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(Ⅰ)求证:BM⊥平面ADM;小明文库页(共15页)(Ⅱ)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.22.(12分)已知函数f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.设a>0,将函数f(x)的图象先向右平移a个单位长度,再向下平移a2个单位长度,得到函数g(x)的图象.(Ⅰ)若函数g(x)有两个零点x1,x2,且x1<4<x2,求实数a的取值范围;(Ⅱ)设连续函数在区间[m,n]上的值域为[λ,μ],若有,则称该函数为“陡峭函数”.若函数g(x)在区间[a,2a]上为“陡峭函数”,求实数a的取值范围.小明文库页(共15页)2016-2017学年广东省深圳市南山区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(∁UA)∩B等于()A.{0,4}B.{0,3,4}C.{0,2,3,4}D.{2}【解答】解:∵∁UA={0,3,4},∴(∁UA)∩B={0,4},故选:A2.(5分)函数y=1﹣2x的值域为()A.[1,+∞)B.(1,+∞)C.(﹣∞,1]D.(﹣∞,1)【解答】解:函数y=1﹣2x,其定义域为R.∵2x的值域为(0,+∞),∴函数y=1﹣2x的值域为(﹣∞,1),故选D.3.(5分)直线3x+y+1=0的倾斜角是()A.30°B.60°C.120°D.150°【解答】解:直线3x+y+1=0的斜率为:,直线的倾斜角为:θ,tan,可得θ=120°.故选:C.4.(5分)如图是一个几何体的三视图,则该几何体的体积为()小明文库页(共15页)A.9πB.18πC.27πD.54π【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的圆锥,圆锥的底面直径为6,故底面半径r=3,圆锥的高h=6,故圆锥的体积V==18π,故选:B5.(5分)下列函数中既是偶函数,又在(0,+∞)上单调递减的为()A.B.y=x﹣2C.D.y=x2【解答】解:对于A:y=,函数在(0,+∞)递增,不合题意;对于B:y=是偶函数,在(0,+∞)递减,符合题意;对于C:y=,不是偶函数,不合题意;对于D:y=x2在(0,+∞)递增,不合题意;故选:B.6.(5分)已知直线l1:3x+2y+1=0,l2:x﹣2y﹣5=0,设直线l1,l2的交点为A,则点A到直线的距离为()A.1B.3C.D.【解答】解:联立,得,∴A(1,﹣2),∴点A到直线的距离为d==1.小明文库页(共15页)故选:A.7.(5分)方程的实数根的所在区间为()A.(3,4)B.(2,3)C.(1,2)D.(0,1)【解答】解:令f(x)=lnx﹣,易知f(x)在其定义域上连续,f(2)=ln2﹣=ln2﹣ln>0,f(1)=ln1﹣1=﹣1<0,故f(x)=lnx﹣,在(1,2)上有零点,故方程方程的根所在的区间是(1,2);故选:C.8.(5分)计算其结果是()A.﹣1B.1C.﹣3D.3【解答】解:原式=+﹣lg5+|lg2﹣1|=+﹣lg5﹣lg1+1=1,故选:B9.(5分)已知b>0,log3b=a,log6b=c,3d=6,则下列等式成立的是()A.a=2cB.d=acC.a=cdD.c=ad【解答】解:b>0,3d=6,∴d=log36,∴log36•log6b=log3b,∴a=cd故选:C10.(5分)已知α,β是两个不同的平面,给出下列四个条件:小明文库页(共15页)①存在一条直线a,使得a⊥α,a⊥β;②存在两条平行直线a,b,使得a∥α,a∥β,b∥α,b∥β;③存在两条异面直线a,b,使得a⊂α,b⊂β,a∥β,b∥α;④存在一个平面γ,使得γ⊥α,γ⊥β.其中可以推出α∥β的条件个数是()A.1B.2C.3D.4【解答】解:当α、β不平行时,不存在直线a与α、β都垂直,∴a⊥α,a⊥β⇒α∥β,故①正确;对②,∵a∥b,a⊂α,b⊂β,a∥β,b∥α时,α、β位置关系不确定②不正确;对③,异面直线a,b.∴a过上一点作c∥b;过b上一点作d∥a,则a与c相交;b与d相交,根据线线平行⇒线面平行⇒面面平行,正确对④,∵γ⊥α,γ⊥β,α、β可以相交也可以平行,∴不正确.故选B.11.(5分)设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.()A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)【解答】解:集合A={x|2x≤8}={x|x≤3},因为A∪B=A,所以B⊆A,所以m2+m+1≤3,解得﹣2≤m≤1,即m∈[﹣2,1].故选:B.12.(5分)定义函数序列:,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn﹣1(x)),则函数y=f2017(x)的图象与曲线的交点坐标为()A.B.C.D.小明文库页(共15页)【解答】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))==,f3(x)=f(f2(x))==,…fn(x)=f(fn﹣1(x))=,∴f2017(x)=,由得:,或,由中x≠1得:函数y=f2017(x)的图象与曲线的交点坐标为,故选:A二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)函数y=+1g(x﹣1)的定义域是(1,2].【解答】解:要使函数有意义,可得:,解得:x∈(1,2].函数y=+1g(x﹣1)的定义域是(1,2].故答案为:(1,2].14.(5分)设函数f(x)=,则方程f(x)=2的所有实数根之和为.小明文库页(共15页)【解答】解:∵f(x)=,则方程f(x)=2∴x>0时,x=2,x=3,x≤0时,x2=2,x=,∴+3=故答案为:15.(5分)设点A(﹣5,2),B(1,4),点M为线段AB的中点.则过点M,且与直线3x+y﹣2=0平行的直线方程为3x+y+3=0.【解答】解:M(﹣2,3),设与直线3x+y﹣2=0平行的直线方程为:3x+y+m=0,把点M的坐标代入可得:﹣6+3+m=0,解得m=3.故所求的直线方程为:3x+y+3=0.故答案为:3x+y+3=0.16.(5分)下列命题中①若loga3>logb3,则a>b;②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;④函数既是奇函数又是减函数.其中正确的命题有②④.【解答】解:若loga3>logb3>0,则a<b,故①错误;函数f(x)=x2﹣2x+3的图象开口朝上,且以直线x=1为对称轴,当x=1时,函数取最小值2,无最大值,故函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);小明文库页(共15页)故②正确;g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)可能存在零点;故③错误;数满足h(﹣x)=﹣h(x),故h(x)为奇函数,又由=﹣ex<0恒成立,故h(x)为减函数故④正确;故答案为:②④.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)在正方体ABCD﹣A1B1C1D1中:(Ⅰ)求证:AC∥平面A1BC1;(Ⅱ)求证:平面A1BC1
本文标题:20162017学年广东省深圳市南山区高一上期末数学试卷
链接地址:https://www.777doc.com/doc-6814050 .html