您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 20172018学年吉林省吉林市吉化一中高一上期末数学试卷
小明文库页(共17页)2017-2018学年吉林省吉林市吉化一中高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=Z,A={0,1,2,3},B={x|x2=2x},则A∩(∁UB)为()A.{1,3}B.{0,2}C.{0,1,3}D.{2}2.(5分)函数的定义域为()A.(﹣∞,1)B.(0,1]C.(0,1)D.(0,+∞)3.(5分)函数f(x)=ex+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)4.(5分)如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.B.C.D.5.(5分)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A.B.C.D.6.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()小明文库页(共17页)A.πB.2πC.πD.π7.(5分)如图,正方体ABCD﹣A1B1C1D1中,AB的中点M,DD1的中点N,则异面直线B1M与CN所成的角是()A.30°B.45°C.60°D.90°8.(5分)我国古代数学名著《数学九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)()A.29尺B.24尺C.26尺D.30尺9.(5分)过点(1,2),且与原点距离最大的直线方程是()A.x+2y﹣5=0B.2x+y﹣4=0C.x+3y﹣7=0D.x﹣2y+3=010.(5分)与直线x﹣y﹣4=0和圆x2+y2+2x﹣2y=0都相切的半径最小的圆的方程是()A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x﹣1)2+(y+1)2=2D.(x﹣1)2+(y+1)=411.(5分)若动点P到点F(1,1)和直线3x+y﹣4=0的距离相等,则点P的轨迹方程为()A.3x+y﹣6=0B.x﹣3y+2=0C.x+3y﹣2=0D.3x﹣y+2=012.(5分)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是()A.点在圆上B.点在圆内C.点在圆外D.不能确定二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知直线5x+12y+a=0与圆x2+y2﹣2x=0相切,则a的值为.小明文库页(共17页)14.(5分)已知奇函数f(x),x∈(0,+∞),f(x)=lgx,则不等式f(x)<0的解集是.15.(5分)如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P﹣DCE的外接球的体积为.16.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆上存在点P,使得∠APB=90°,则m的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.(12分)△ABC的边AC,AB上的高所在直线方程分别为2x﹣3y+1=0,x+y=1,顶点A(1,2),求BC边所在的直线方程.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A1;(3)求三棱锥C﹣BC1D的体积.20.(12分)如图,在五面体ABCDEF中,四边形ABCD是边长为2的正方形,EF∥平面ABCD,EF=1,FB=FC,∠BFC=90°,AE=.小明文库页(共17页)(1)求证:AB⊥平面BCF;(2)求直线AE与平面BDE所成角的正切值.21.(12分)如图,已知ABCD是上、下底边长分别为2和6,高为的等腰梯形,将它沿对称轴OO1折成直二面角.(1)证明:AC⊥BO1;(2)求二面角O﹣AC﹣O1的余弦值.22.(12分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.小明文库页(共17页)2017-2018学年吉林省吉林市吉化一中高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=Z,A={0,1,2,3},B={x|x2=2x},则A∩(∁UB)为()A.{1,3}B.{0,2}C.{0,1,3}D.{2}【解答】解:∵全集U=Z,A={0,1,2,3},B={x|x2=2x}={0,2},∴CUB={x|x∈Z,且x≠0,且x≠2},∴A∩CUB={1,3}.故选A.2.(5分)函数的定义域为()A.(﹣∞,1)B.(0,1]C.(0,1)D.(0,+∞)【解答】解:函数的定义域为:{x|},解得{x|0<x<1},故选C.3.(5分)函数f(x)=ex+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【解答】解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选C.小明文库页(共17页)4.(5分)如图所示,直观图四边形A′B′C′D′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.B.C.D.【解答】解:根据斜二侧画法可知,原图形为直角梯形,其中上底AD=1,高AB=2A'B'=2,下底为BC=1+,∴.故选:A.5.(5分)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A.B.C.D.【解答】解:被截去的四棱锥的三条可见棱中,在两条为长方体的两条对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有D符合.故选D.小明文库页(共17页)6.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A.πB.2πC.πD.π【解答】解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D7.(5分)如图,正方体ABCD﹣A1B1C1D1中,AB的中点M,DD1的中点N,则异面直线B1M与CN所成的角是()A.30°B.45°C.60°D.90°【解答】解:由题意,在右面补一个正方体,如图:∵AB的中点M,取C1E的中点P,连接CP,可得:CP∥B1M,∴∠NCP是异面直线B1M与CN所成的角的平面角.连接NP,设正方体ABCD﹣A1B1C1D1的边长为a.可得:CN=CP=.NP==.∵△NCP的三条边满足:CN2+CP2=NP2.∴∠NCP=90°.即异面直线B1M与CN所成的角是90°.小明文库页(共17页)故选:D.8.(5分)我国古代数学名著《数学九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)()A.29尺B.24尺C.26尺D.30尺【解答】解:由题意,圆柱的侧面展开图是矩形,一条直角边(即木棍的高)长24尺,另一条直角边长5×2=10(尺),因此葛藤长=26(尺).故选:C.9.(5分)过点(1,2),且与原点距离最大的直线方程是()A.x+2y﹣5=0B.2x+y﹣4=0C.x+3y﹣7=0D.x﹣2y+3=0【解答】解:根据题意得,当与直线OA垂直时距离最大,因直线OA的斜率为2,所以所求直线斜率为﹣,所以由点斜式方程得:y﹣2=﹣(x﹣1),化简得:x+2y﹣5=0,故选:A.10.(5分)与直线x﹣y﹣4=0和圆x2+y2+2x﹣2y=0都相切的半径最小的圆的方程是()A.(x+1)2+(y+1)2=2B.(x+1)2+(y+1)2=4C.(x﹣1)2+(y+1)2=2D.(x﹣1)2+(y+1)=4【解答】解:由题意圆x2+y2+2x﹣2y=0的圆心为(﹣1,1),半径为,小明文库页(共17页)∴过圆心(﹣1,1)与直线x﹣y﹣4=0垂直的直线方程为x+y=0,所求的圆的圆心在此直线上,排除A、B,∴圆心(﹣1,1)到直线x﹣y﹣4=0的距离为=3,则所求的圆的半径为,故选C.11.(5分)若动点P到点F(1,1)和直线3x+y﹣4=0的距离相等,则点P的轨迹方程为()A.3x+y﹣6=0B.x﹣3y+2=0C.x+3y﹣2=0D.3x﹣y+2=0【解答】解:点F(1,1)在直线3x+y﹣4=0上,则点P的轨迹是过点F(1,1)且垂直于已知直线的直线,因为直线3x+y﹣4=0的斜率为﹣3,所以所求直线的斜率为,由点斜式知点P的轨迹方程为y﹣1=(x﹣1)即x﹣3y+2=0故选B12.(5分)若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是()A.点在圆上B.点在圆内C.点在圆外D.不能确定【解答】解:直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则<1,∴a2+b2>1,点P(a,b)在圆C外部,故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知直线5x+12y+a=0与圆x2+y2﹣2x=0相切,则a的值为﹣18或8.【解答】解:圆的标准方程为(x﹣1)2+y2=1,小明文库页(共17页)圆心坐标为(1,0),半径R=1,∵直线和圆相切,∴圆心到直线的距离d===1,即|a+5|=13,即a+5=13或a+5=﹣13,得a=8或a=﹣18,故答案为:﹣18或814.(5分)已知奇函数f(x),x∈(0,+∞),f(x)=lgx,则不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1).【解答】解:x∈(0,+∞),f(x)=lgx,不等式f(x)<0化为lgx<0,∴0<x<1.当x<0时,∵函数f(x)是奇函数,∴f(x)=﹣f(﹣x)=﹣lg(﹣x),由f(x)<0即﹣lg(﹣x)<0,化为lg(﹣x)>0,∴﹣x>1,解得x<﹣1.综上可得不等式f(x)<0的解集是:(﹣∞,﹣1)∪(0,1).故答案为:(﹣∞,﹣1)∪(0,1).15.(5分)如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P﹣DCE的外接球的体积为.【解答】解:∵∠DAB=60°∴三棱锥P﹣DCE各边长度均为1∴三棱锥P﹣DCE为正三棱锥P点在底面DCE的投影为等边△DCE的中心,设中心为O∴OD=OE=OC=在直角△POD中:OP2=PD2﹣OD2=小明文库
本文标题:20172018学年吉林省吉林市吉化一中高一上期末数学试卷
链接地址:https://www.777doc.com/doc-6814133 .html