您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 20172018学年吉林省吉林市田家炳实验中学高一上期末数学试卷
小明文库页(共11页)2017-2018学年吉林省吉林市田家炳实验中学高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)若集合A={x|(x﹣1)(x+2)>0},集合B={﹣3,﹣2,﹣1,0,1,2},则A∩B等于()A.{0,1}B.{﹣3,﹣2}C.{﹣3,2}D.{﹣3,﹣2,1,2}2.(5分)函数y=的定义域是()A.(,+∞)B.[,+∞)C.(﹣∞,)D.(﹣∞,]3.(5分)tan690°的值为()A.﹣B.C.﹣D.4.(5分)已知扇形的面积为π,半径是1,则扇形的圆心角是()A.πB.πC.πD.π5.(5分)函数图象的对称轴方程可以为()A.B.C.D.6.(5分)函数y=﹣cos2x+sinx的值域为()A.[﹣1,1]B.[﹣,﹣1]C.[﹣,1]D.[﹣1,]7.(5分)已知f(x)满足f(a•b)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=()A.2pqB.2(p+q)C.p2q2D.p2+q28.(5分)要得到函数y=cos2x的图象,只需将y=cos(2x+)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.(5分)已知向量,满足⊥,||=1,||=2,则|2﹣|=()A.0B.2C.4D.8小明文库页(共11页)10.(5分)D是△ABC的边BC上的一点,且BD=BC,设=,=,则等于()A.(﹣)B.(﹣)C.(2+)D.(2﹣)11.(5分)已知函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,则f(1)=()A.3B.﹣3C.0D.4﹣112.(5分)用二分法求函数f(x)=3x﹣x﹣4的零点时,其参考数据如下f(1.6000)=0.200f(1.5875)=0.133f(1.5750)=0.067f(1.5625)=0.003f(1.5562)=﹣0.029f(1.5500)=﹣0.060据此数据,可得f(x)=3x﹣x﹣4的一个零点的近似值(精确到0.01)为()A.1.55B.1.56C.1.57D.1.58二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=loga(2x﹣1)+1(a>0,且a≠1)的图象必过定点.14.(5分)设f(x)=,则f(f(2))等于.15.(5分)已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.16.(5分)已知向量=(2sinx,cosx),=(2,1),若∥,则sinx•cosx=.三、解答题(本大题共4小题,共40分)17.(10分)已知角α终边上一点P(﹣4,3),求下列各式的值..18.(10分)设=(﹣1,1),=(4,3).小明文库页(共11页)(1)求,;(2)求与的夹角的余弦值;(3)求在方向上的投影.19.(10分)已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,)在一个周期内,当时,y有最大值为2,当时,y有最小值为﹣2.(1)求函数f(x)表达式;(2)若g(x)=f(﹣x),求g(x)的单调递减区间.20.(10分)已知函数f(x)=loga(1+x)﹣loga(1﹣x)(a>0,且a≠1).(1)写出函数f(x)的定义域,判断f(x)奇偶性,并证明;(2)当0<a<1时,解不等式f(x)>0.小明文库页(共11页)2017-2018学年吉林省吉林市田家炳实验中学高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)若集合A={x|(x﹣1)(x+2)>0},集合B={﹣3,﹣2,﹣1,0,1,2},则A∩B等于()A.{0,1}B.{﹣3,﹣2}C.{﹣3,2}D.{﹣3,﹣2,1,2}【解答】解:由A中不等式解得:x<﹣2或x>1,即A=(﹣∞,﹣2)∪(1,+∞),∵B={﹣3,﹣2,﹣1,0,1,2},∴A∩B={﹣3,2},故选:C.2.(5分)函数y=的定义域是()A.(,+∞)B.[,+∞)C.(﹣∞,)D.(﹣∞,]【解答】解:要使函数有意义,则需2x﹣1≥0,即x≥,所以原函数的定义域为[,+∞).故选:B.3.(5分)tan690°的值为()A.﹣B.C.﹣D.【解答】解:tan690°=tan(720°﹣30°)=﹣tan30°=﹣,故选A.4.(5分)已知扇形的面积为π,半径是1,则扇形的圆心角是()小明文库页(共11页)A.πB.πC.πD.π【解答】解:设扇形的圆心角是α.则=,解得.故选:C.5.(5分)函数图象的对称轴方程可以为()A.B.C.D.【解答】解:函数图象的对称轴方程∴k=0时,∴函数图象的对称轴方程可以为故选A.6.(5分)函数y=﹣cos2x+sinx的值域为()A.[﹣1,1]B.[﹣,﹣1]C.[﹣,1]D.[﹣1,]【解答】解:y=﹣cos2x+sinx,=sin2x+sinx﹣1,=,当,.当sinx=1时.,故函数的值域为:.故选:C7.(5分)已知f(x)满足f(a•b)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=()小明文库页(共11页)A.2pqB.2(p+q)C.p2q2D.p2+q2【解答】解:由f(a•b)=f(a)+f(b),得f(36)=f(6)+f(6)=2f(6)=2[f(2)+f(3)]=2(p+q),故选B.8.(5分)要得到函数y=cos2x的图象,只需将y=cos(2x+)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:设将y=cos(2x+)的图象,向右平移A个单位长度后,得到函数y=cos2x的图象则cos[2(x﹣A)+)]=cos(2x)易得A=故选B9.(5分)已知向量,满足⊥,||=1,||=2,则|2﹣|=()A.0B.2C.4D.8【解答】解:由已知向量,满足⊥,||=1,||=2,则|2﹣|2=4=4+4=8,所以|2﹣|=;故选B.10.(5分)D是△ABC的边BC上的一点,且BD=BC,设=,=,则等于()A.(﹣)B.(﹣)C.(2+)D.(2﹣)【解答】解:由向量的运算法则可得=+=+=+(﹣)小明文库页(共11页)=+=+=故选C.11.(5分)已知函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,则f(1)=()A.3B.﹣3C.0D.4﹣1【解答】解:∵函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,∴f(﹣1)=asin(﹣1)﹣btan(﹣1)+4×=﹣asin1+btan1+2=1,∴asin1﹣btan1=1,∴f(1)=asin1﹣bsin1+4×=1+2=3.故选:A.12.(5分)用二分法求函数f(x)=3x﹣x﹣4的零点时,其参考数据如下f(1.6000)=0.200f(1.5875)=0.133f(1.5750)=0.067f(1.5625)=0.003f(1.5562)=﹣0.029f(1.5500)=﹣0.060据此数据,可得f(x)=3x﹣x﹣4的一个零点的近似值(精确到0.01)为()A.1.55B.1.56C.1.57D.1.58【解答】解:由图表知,f(1.5625)=0.003>0,f(1.5562)=﹣0.0029<0,∴函数f(x)=3x﹣x﹣4的一个零点在区间(1.5625,1.5562)上,故函数的零点的近似值(精确到0.01)为1.56,可得方程3x﹣x﹣4=0的一个近似解(精确到0.01)为1.56,故选:B二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=loga(2x﹣1)+1(a>0,且a≠1)的图象必过定点(1,1).小明文库页(共11页)【解答】解:由对数函数的定义,令2x﹣1=1,此时y=1,解得x=1,故函数y=loga(2x﹣1)+1的图象恒过定点(1,1)故答案为(1,1)14.(5分)设f(x)=,则f(f(2))等于2.【解答】解:∵f(x)=,∴f(2)==1,f(1)=2e1﹣1=2.则f(f(2))=f(1)=2.故答案为:2.15.(5分)已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=.【解答】解:向量,∴又A、B、C三点共线故(4﹣k,﹣7)=λ(﹣2k,﹣2)∴k=故答案为16.(5分)已知向量=(2sinx,cosx),=(2,1),若∥,则sinx•cosx=.小明文库页(共11页)【解答】解:∵向量=(2sinx,cosx),=(2,1),∥,∴=,∴sinx=cosx,∴sin2x+cos2x=2sin2x=1,∴sinx•cosx=sin2x=.故答案为:.三、解答题(本大题共4小题,共40分)17.(10分)已知角α终边上一点P(﹣4,3),求下列各式的值..【解答】解:∵角α终边上一点P(﹣4,3),∴tanα===﹣,∴(1)===;(2)==tanα=﹣.18.(10分)设=(﹣1,1),=(4,3).(1)求,;(2)求与的夹角的余弦值;(3)求在方向上的投影.【解答】解:(1)根据题意,=(﹣1,1),=(4,3),则+=(3,4),•=(﹣1)×4+1×3=﹣1;小明文库页(共11页)(2)设与的夹角为θ,由(1)的结论,•=(﹣1)×4+1×3=﹣1,且||=,||=5,则cosθ==﹣,(3)在方向上的投影为=﹣.19.(10分)已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,)在一个周期内,当时,y有最大值为2,当时,y有最小值为﹣2.(1)求函数f(x)表达式;(2)若g(x)=f(﹣x),求g(x)的单调递减区间.【解答】解:(1)∵在一个周期内,当时,y有最大值为2,当时,y有最小值为﹣2.∴可得A=2,且函数的周期T=2(﹣)=π,得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)把代入f(x)=2sin(2x+ϕ),得∴,结合取k=0,得∴函数f(x)表达式为:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)结合(1)的表达式,得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)由﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)得:所以g(x)的单调递减区间为.﹣﹣﹣﹣﹣﹣﹣小明文库页(共11页)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)20.(10分)已知函数f(x)=loga(1+x)﹣loga(1﹣x)(a>0,且a≠1).(1)写出函数f(x)的定义域,判断f(x)奇偶性,并证明;(2)当0<a<1时,解不等式f(x)>0.【解答】解:(1)由题设可得,解得﹣1<x<1,故函数f(x)定义域为(﹣1,1)从而:f(﹣x)=loga[1+(﹣x)]﹣loga[1﹣(﹣x)]=﹣[loga(1+x)﹣loga(1﹣x)]=﹣f(x)故f(x)为奇函数.(2)由题设可得loga(1+x)﹣loga(1﹣x)>0,即:loga(1+x)>loga(1﹣x)∵0<a<1,∴y=logax为(0,∞)上的减函数∴0<1+x<1﹣x,解得:﹣1<x<0故不等式f(x)>0的解集为(﹣1,0).
本文标题:20172018学年吉林省吉林市田家炳实验中学高一上期末数学试卷
链接地址:https://www.777doc.com/doc-6814135 .html