您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > (完整版)七年级几何证明压轴题
一、选择1.如图,已知:在△ABC中,AB=AC,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于D,∠AED=155°,则∠EDF等于()A.50°B.65°C.70°D.75°2.下列判断错误的是()A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.3.下列判断正确的是()A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.二、压轴题1.(11分)如图12-1,点O是线段AD上的一点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.(1)求∠AEB的大小;(2)如图12-2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.2.(本题9分)如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.⑴若∠B=35°,∠ACB=85°,求∠E的度数;⑵当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系.写出结论无需证明.3如图1,△ABC的边BC直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.AODCBEG图12-1CDOABEG图12-2PEDCBA图①DAECBFl图②ABEFClD图3图2图1EFEPCBAABCABCPP(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.4.(本题8分)如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠.(1)如图1,若∠BCA=90°,∠=90°,问EF=BE-AF,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA=60°,∠=120°(如图2),问EF=BE-AF仍成立吗?说明理由.(3)若0°∠BCA90°,请你添加一个关于∠与∠BCA关系的条件,使结论EF=BE-AF仍然成立.你添加的条件是.(直接写出结论)5.(本题6分)如图①,直线l过正方形ABCD的顶点B,A、C两顶点在直线l同侧,过点A、C分别作AE⊥直线l、CF⊥直线l.(1)试说明:EF=AE+CF;(2)如图②,当A、C两顶点在直线l两侧时,其它条件不变,猜想EF、AE、CF满足什么数量关系(直接写出答案,不必说明理由).6、P点是ABC和外角ACE的角平分线的交点,;如图3,若P点是外角CBF和BCE的角平分线的交点.分别指出每个图中∠BPC和∠A的关系,并选择其中一个加以证明.7、(本题12分)如图,C是线段AB上一点,分别以AC、CB为边作等边三角形ACD和CBE,连结AE、BD,AE交DC、DB分别为F点、H点,BD交CE于G点,连结FG.求证:①∠FAC=∠HDC;②∠HFG=∠HAC;③∠BHA=120°.HFGEDCBA8、如图,在△ABC中,∠A=.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;……;∠A2008BC与∠A2008CD的平分线相交于点A2009,得∠A2009.则∠A2009=.9.观察并探求下列各问题,写出你所观察得到的结论,并说明理由.(每小题2分,观察得出结论与说明理由各占1分.)(1)如图①,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.CBAPBACD第7题图A1A2图①(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.CBAP图②(3)将(2)中点P变为两个点P1、P2得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.图③CBAP1P2(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图④,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.CBAP1P2图④(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.CBAP1P2B1C1图⑤10、.(1)BP+PC<AB+AC,理由:三角形两边之和大于第三边,或两点之间线段最短.(2)△BPC的周长<△ABC的周长.理由:如图,延长BP交AC于M,在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加得BP+PC<AB+AC,于是得:△BPC的周长<△ABC的周长.CBAPM(3)四边形BP1P2C的周长<△ABC的周长.理由:如图,分别延长BP1、CP2交于M,由(2)知,BM+CM<AB+AC,又P1P2<P1M+P2M,可得,BP1+P1P2+P2C<BM+CM<AB+AC,可得结论.或:作直线P1P2分别交AB、AC于M、N(如图),△BMP1中,BP1<BM+MP1,△AMN中,MP1+P1P2+P2M<AM+AN,△P2NC中,P2C<P2N+NC,三式相加得:BP1+P1P2+P2C<AB+AC,可得结论.CBAP1P2MCBAP1P2NM(4)四边形BP1P2C的周长<△ABC的周长.理由如下:将四边形BP1P2C沿直线BC翻折,使点P1、P2落在△ABC内,转化为(3)情形,即可.(5)比较四边形B1P1P2C1的周长<△ABC的周长.理由如下:如图,分别作如图所示的延长线交△ABC的边于M、N、K、H,在△BNM中,NB1+B1P1+P1M<BM+BN,又显然有,B1C1+C1K<NB1+NC+CK,及C1P2+P2H<C1K+AK+AH,及P1P2<P2H+MH+P1M,将以上各式相加,得B1P1+P1P2+P2C+B1C1<AB+BC+AC,于是得结论.CBAP1P2B1C1HKNM1111..((本本题题1122分分))如如图图,,已已知知等等边边△△AABBCC和和点点PP,,设设点点PP到到△△AABBCC三三边边AABB、、AACC、、BBCC((或或其其延延长长线线))的的距距离离分分别别为为hh11、、hh22、、hh33,,△△AABBCC的的高高为为hh..在在图图((11))中中,,点点PP是是边边BBCC的的中中点点,,此此时时hh33==00,,可可得得结结论论::hhhh321..在在图图((22))----((55))中中,,点点PP分分别别在在线线段段MMCC上上、、MMCC延延长长线线上上、、△△AABBCC内内、、△△AABBCC外外..((11))请请探探究究::图图((22))----((55))中中,,hh11、、hh22、、hh33、、hh之之间间的的关关系系;;((直直接接写写出出结结论论))((22))证证明明图图((22))所所得得结结论论;;((33))证证明明图图((44))所所得得结结论论..((44))((附附加加题题22分分))在在图图((66))中中,,若若四四边边形形RRBBCCSS是是等等腰腰梯梯形形,,∠∠BB==∠∠CC==6600oo,,RRSS==nn,,BBCC==mm,,点点PP在在梯梯形形内内,,且且点点PP到到四四边边BBRR、、RRSS、、SSCC、、CCBB的的距距离离分分别别是是hh11、、hh22、、hh33、、hh44,,桥桥形形的的高高为为hh,,则则hh11、、hh22、、hh33、、hh44、、hh之之间间的的关关系系为为::;;图图((44))与与图图((66))中中的的等等式式有有何何关关系系??FABCDEPM(4)ABCDEPM(3)ABCDEPM(2)ABCDEM(P)(1)ABCDEPM(5)FABCDEPM(6)RS12、已知:如图①所示,在ABC△和ADE△中,ABAC,ADAE,∠BAC=∠DAE,,连接BECDMN,,,分别为BECD,的中点.(1)当点BAD,,在一条直线上,试说明:BECD;(2)将ADE△绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请判断AM=AN是否成立?并说明你的理由;(3)在旋转的过程中,设直线BE与CD相交于点P,当90°∠BAC180°时,请直接写出∠CPB与∠MAN之间的数量关系.13.如图,△ABC与△ADE都是等边三角形,连结BD、CE交点记为点F.(1)BD与CE相等吗?请说明理由.(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DG之间的关系?14.正方形四边条边都相等,四个角都是90.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.CENDABM图①CAEMBDN图②第27题图MFGABCDE图2HFGDANMBCE图1HFGDAMNBCE15.如图1,一等腰直角三角尺GEF(∠EGF=90°,∠GEF=∠GFE=45°,GE=GF)的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN相等吗?并说明理由;(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?请说明理由.16如图,在Rt△ABC中,∠ACB=450,∠BAC=900,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.17、如图,在△ABC中,AB=AC,P为底边上任意一点,PE⊥AB,PF⊥AC,BD⊥AC.(1)求证:PE+PF=BD;(2)若点P是底边BC的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.18.(5分)已知:如图,40,34DB,AM,CM分别平分∠BAD和∠BCD图2EBDGFOMNC图3ABDGEFOMNC图1A(G)B(E)CD(F)CBAPDEABCDM123456(1)求M的大小:(2)当DB,为任意角时,探索M与DB,间的数量关系,并对你的结论加以证明
本文标题:(完整版)七年级几何证明压轴题
链接地址:https://www.777doc.com/doc-6818541 .html