您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 2015年高考数学理真题分类汇编专题10立体几何解析
专题十立体几何1.【2015高考安徽,理5】已知m,n是两条不同直线,,是两个不同平面,则下列命题正确的是()(A)若,垂直于同一平面,则与平行(B)若m,n平行于同一平面,则m与n平行(C)若,不平行,则在内不存在与平行的直线(D)若m,n不平行,则m与n不可能垂直于同一平面【答案】D【解析】由A,若,垂直于同一平面,则,可以相交、平行,故A不正确;由B,若m,n平行于同一平面,则m,n可以平行、重合、相交、异面,故B不正确;由C,若,不平行,但平面内会存在平行于的直线,如平面中平行于,交线的直线;由D项,其逆否命题为“若m与n垂直于同一平面,则m,n平行”是真命题,故D项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设,是两个不同的平面,m是直线且m⊂.“m∥”是“∥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】因为,是两个不同的平面,m是直线且m⊂.若“m∥”,则平面、可能相交也可能平行,不能推出//,反过来若//,m,则有m∥,则“m∥”是“∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()(A)14斛(B)22斛(C)36斛(D)66斛【答案】B【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是14圆锥,底面周长是两个底面半径与14圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.4.【2015高考陕西,理5】一个几何体的三视图如图所示,则该几何体的表面积为()A.3B.4C.24D.34【答案】D【解析】由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是1211222342,故选D.【考点定位】1、三视图;2、空间几何体的表面积.【名师点晴】本题主要考查的是三视图和空间几何体的表面积,属于容易题.解题时要看清楚是求表面积还是求体积,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可.5.【2015高考新课标1,理11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20,则r=()(A)1(B)2(C)4(D)8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为22142222rrrrrr=2254rr=16+20,解得r=2,故选B.【考点定位】简单几何体的三视图;球的表面积公式、圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量.6.【2015高考重庆,理5】某几何体的三视图如图所示,则该几何体的体积为A、13B、23C、123D、223【答案】A【解析】这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V,选A.【考点定位】组合体的体积.【名师点晴】本题涉及到三视图的认知,要求学生能由三视图画出几何体的直观图,从而分析出它是哪些基本几何体的组合,应用相应的体积公式求出几何体的体积,关键是画出直观图,本题考查了学生的空间想象能力和运算求解能力.7.【2015高考北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是()正(主)视图11俯视图侧(左)视图21A.25B.45C.225D.5【答案】C52,三棱锥表面积表252S.考点定位:本题考点为利用三视图还原几何体及求三棱锥的表面积,考查空间线线、线面的位置关系及有关线段长度及三角形面积数据的计算.【名师点睛】本题考查三视图及多面体的表面积,本题属于基础题,正确利用三视图还原为原几何体,特别是有关数据的还原,另外要利用线面垂直的性质,判断三角形的形状,特别是侧面PAB的形状为等腰三角形,正确求出三个侧面的面积和底面的面积.8.【2015高考安徽,理7】一个四面体的三视图如图所示,则该四面体的表面积是()(A)13(B)23(C)122(D)22【答案】B【解析】由题意,该四面体的直观图如下,,ABDBCD是等腰直角三角形,,ABCACD是等边三角形,则113221,22sin60222BCDABDABCACDSSSS,所以四面体的表面积3212232BCDABDABCACDSSSSS,故选B.【考点定位】1.空间几何体的三视图与直观图;2.空间几何体表面积的求法.【名师点睛】三视图是高考中的热门考点,解题的关键是熟悉三视图的排放规律:长对正,高平齐,宽相等.同时熟悉常见几何体的三视图,这对于解答这类问题非常有帮助,本题还应注意常见几何体的体积和表面积公式.9.【2015高考新课标2,理9】已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【答案】C【考点定位】外接球表面积和椎体的体积.BOAC【名师点睛】本题以球为背景考查空间几何体的体积和表面积计算,要明确球的截面性质,正确理解四面体体积最大时的情形,属于中档题.10.【2015高考山东,理7】在梯形ABCD中,2ABC,//,222ADBCBCADAB.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()(A)23(B)43(C)53(D)2【答案】C【解析】直角梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为:2215121133VVV圆柱圆锥学优高考网故选C.【考点定位】1、空间几何体的结构特征;2、空间几何体的体积.【名师点睛】本题考查了空间几何体的结构特征及空间几何体的体积的计算,重点考查了圆柱、圆锥的结构特征和体积的计算,体现了对学生空间想象能力以及基本运算能力的考查,此题属中档题.11.【2015高考浙江,理8】如图,已知ABC,D是AB的中点,沿直线CD将ACD折成ACD,所成二面角ACDB的平面角为,则()A.ADBB.ADBC.ACBD.ACB【答案】B.【解析】试题分析:设ADC,设2AB,则由题意1ADBD,在空间图形中,设ABt,在ACB中,2222222112cos22112ADDBABttADBADDB,在空间图形中,过A作ANDC,过B作BMDC,垂足分别为N,M,过N作//NPMB,连结AP,∴NPDC,则ANP就是二面角ACDB的平面角,∴ANP,在RtAND中,coscosDNADADC,sinsinANADADC,同理,sinBMPN,cosDM,故2cosBPMN,显然BP面ANP,故BPAP,在RtABP中,2222222(2cos)4cosAPABBPtt,在ANP中,222coscos2ANNPAPANPANNP2222sinsin(4cos)2sinsint【考点定位】立体几何中的动态问题【名师点睛】本题主要考查立体几何中的动态问题,属于较难题,由于ABC的形状不确定,'ACB与的大小关系是不确定的,再根据二面角的定义即可知ADB,当且仅当ACBC时,等号成立以立体几何为背景的创新题是浙江高考数学试卷的热点问题,12年,13年选择题压轴题均考查了立体几何背景的创新题,解决此类问题需在平时注重空间想象能力的培养,加强此类问题的训练.【2015高考湖南,理10】某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)()A.89B.169C.34(21)D.312(21)【答案】A.【解析】试题分析:分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为x,y,h,长方体上底面截圆锥的截面半径为a,则22224)2(aayx,如下图所示,圆锥的轴截面如图所示,则可知ahha22221,而长方体的体积)22(2222222aahahyxxyhV322162()327aaa,当且仅当yx,3222aaa时,等号成立,此时利用率为98213127162,故选A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.12.【2015高考浙江,理2】某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.38cmB.312cmC.3323cmD.3403cm【答案】C.【考点定位】1.三视图;2.空间几何体的体积计算.【名师点睛】本题主要考查了根据三视图判断空间几何体的形状,再计算其体积,属于容易题,在解题过程中,根据三视图可以得到该几何体是一个正方体与四棱锥的组合,将组合体的三视图,正方体与锥体的体积计算结合在一起,培养学生的空间想象能力、逻辑推理能力和计算能力,会利用所学公式进行计算,体现了知识点的交汇.13.【2015高考福建,理7】若,lm是两条不同的直线,m垂直于平面,则“lm”是“//l的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若lm,因为m垂直于平面,则//l或l;若//l,又m垂直于平面,则lm,所以“lm”是“//l的必要不充分条件,故选B.学优高考网【考点定位】空间直线和平面、直线和直线的位置关系.【名师点睛】本题以充分条件
本文标题:2015年高考数学理真题分类汇编专题10立体几何解析
链接地址:https://www.777doc.com/doc-6821492 .html