您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 专题04立体几何2019年高考真题和模拟题分项汇编数学理解析
专题04立体几何1.【2019年高考全国Ⅰ卷理数】已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A.68B.64C.62D.6【答案】D【解析】解法一:,PAPBPCABC△为边长为2的等边三角形,PABC为正三棱锥,PBAC,又E,F分别为PA,AB的中点,EFPB∥,EFAC,又EFCE,,CEACCEF平面PAC,∴PB平面PAC,2APBPAPBPC,PABC为正方体的一部分,22226R,即364466,π62338RVR,故选D.解法二:设2PAPBPCx,,EF分别为,PAAB的中点,EFPB∥,且12EFPBx,ABC△为边长为2的等边三角形,3CF,又90CEF,213,2CExAEPAx,AEC△中,由余弦定理可得2243cos22xxEACx,作PDAC于D,PAPC,D\为AC的中点,1cos2ADEACPAx,2243142xxxx,221221222xxx,,,2PAPBPC,又===2ABBCAC,,,PAPBPC两两垂直,22226R,62R,344666338VR,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是∥的充分条件,由面面平行性质定理知,若∥,则内任意一条直线都与平行,所以内两条相交直线都与平行是∥的必要条件,故选B.【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,abab∥,则∥”此类的错误.3.【2019年高考全国Ⅲ卷理数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B【解析】如图所示,作EOCD于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MFOD于F,连接BF,平面CDE平面ABCD,,EOCDEO平面CDE,EO平面ABCD,MF平面ABCD,MFB△与EON△均为直角三角形.设正方形边长为2,易知3,12EOONEN,,35,,722MFBFBM,BMEN,故选B.【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.4.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.βγ,αγB.βα,βγC.βα,γαD.αβ,γβ【答案】B【解析】如图,G为AC中点,连接VG,V在底面ABC的投影为O,则P在底面的投影D在线段AO上,过D作DE垂直于AC于E,连接PE,BD,易得PEVG∥,过P作PFAC∥交VG于F,连接BF,过D作DHAC∥,交BG于H,则,,BPFPBDPED,结合△PFB,△BDH,△PDB均为直角三角形,可得coscosPFEGDHBDPBPBPBPB,即;在Rt△PED中,tantanPDPDEDBD,即,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.6.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体1111ABCDABCD挖去四棱锥O—EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,16cm4cmAB=BC=,AA=,3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm2EFGHS四边形,∵四棱锥O−EFGH的高为3cm,∴3112312cm3OEFGHV.又长方体1111ABCDABCD的体积为32466144cmV,所以该模型体积为3214412132cmOEFGHVVV,其质量为0.9132118.8g.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.7.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPDANQCB之后余下的几何体,则几何体的体积3142424402V.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.8.【2019年高考北京卷理数】已知l,m是平面外的两条不同直线.给出下列三个论断:①l⊥m;②m∥;③l⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l⊥α,m∥α,则l⊥m.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l⊥α,m∥α,则l⊥m,正确;(2)如果l⊥α,l⊥m,则m∥α,不正确,有可能m在平面α内;(3)如果l⊥m,m∥α,则l⊥α,不正确,有可能l与α斜交、l∥α.故答案为:如果l⊥α,m∥α,则l⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.9.【2019年高考天津卷理数】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.10.【2019年高考江苏卷】如图,长方体1111ABCDABCD的体积是120,E为1CC的中点,则三棱锥E−BCD的体积是▲.【答案】10【解析】因为长方体1111ABCDABCD的体积为120,所以1120ABBCCC,因为E为1CC的中点,所以112CECC,由长方体的性质知1CC底面ABCD,所以CE是三棱锥EBCD的底面BCD上的高,所以三棱锥EBCD的体积1132VABBCCE111111201032212ABBCCC.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.11.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(2)105.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1DC,可得B1CA1D,故MEND,因此四边形MNDE为平行四边形,MN∥ED.又MN平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A,A1(2,0,4),(1,3,2)M,(1,0,2)N,1(0,0,4)AA,1(1,3,2)AM,1(1,0,2)AN,(0,3,0)MN.设(,,)xyzm为平面A1MA的法向量,则1100AMAAmm,所以32040xyzz,.可取(3,1,0)m.设(,,)pqrn为平面A1MN的法向量,则100MNAN,.nn所以3020qpr,.可取(2,0,1)n.于是2315cos,||525‖mnmnmn,所以二面角1AMAN的正弦值为105.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.12.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.【答案】(1)证明见解析;(2)32.【
本文标题:专题04立体几何2019年高考真题和模拟题分项汇编数学理解析
链接地址:https://www.777doc.com/doc-6822286 .html