您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 教育/培训 > 学习数学课程标准-53页
一、关于课标的修订义务教育课程标准修订的背景是什么?这次课程标准修订是如何组织开展的,经历了哪些过程?对修订结果如何把关?修订的课程标准如何进一步突出德育的时代特征?课程标准修订后容量与难度上有什么变化?如何落实课程标准?二、掌握新课标的特点1.新的课程目标的基本特征把促进学生全面发展放在首位强调学生获得“四基”重视数学思考和问题解决明确了结果性目标和过程性目标的术语是对学生经过某一学段之后的学习结果的行为描述。是所有学生能够达到的基本要求,而不是最高要求。服务于评价,是对课程进行评价的依据。隐含教师是课程开发者而不是教材执行者。是国家课程质量的主要标志,具有严肃性和正统性。2.新的课程标准的性质实验稿:──人人学有价值的数学;──人人都能获得必需的数学;──不同的人在数学上得到不同的发展。修订稿:——人人都能获得良好的数学教育;——不同的人在数学上得到不同的发展。人人都能获得良好的数学教育,与过去的提法相比:出发点不变(人人、不同的人);有更深的意义和更广的内涵;落脚点是数学教育而不是数学内容;有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育)。3.新的课程核心理念(三句变两句)理念“6条”改“5条”在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。原课标:数学课程——数学——数学学习——数学教学——评价——信息技术修改后:数学课程——课程内容(新增)——教学活动(合并)——学习评价——信息技术4.新的理念表述•要处理好四个关系•有效的教学活动是什么•数学课程基本理念(两句话)•数学教学活动的本质要求•培养良好的数学学习习惯•注重启发式•正确看待教师的主导作用•处理好评价中的关系•注意信息技术与课程内容的整合5.新增加的提法原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。6.新的数学观原课标:数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。课标修改稿:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具……数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。义务教育阶段的数学课程应突出基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。----------(实验稿)义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。-------(修订稿)7.新的数学教学观教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。8.新的教学要求----“双基”变“四基”“双基”:基础知识、基本技能。“四基”:基础知识、基本技能、基本思想、基本活动经验。教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。东北师范大学前校长史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远。常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。9.新的主要关键词(十个核心关键词)在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。原课标:数感、符号感、空间观念、统计观念、应用意识、推理能力修改后:数感、符号意识(修改)、运算能力(增加)、模型思想(增加)、空间观念、几何直观(增加)、推理能力、数据分析观念(增加)、应用意识、创新意识。总目标:通过义务教育阶段的数学学习,学生能:(1).获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。(2).体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。(3).了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。10.新的课程目标在课程总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。提出了培养学生发现问题、提出问题、分析问题和解决问题能力。(四个“问题”)目标具体从“知识技能”“数学思考”“问题解决”“情感态度”四个方面阐述。课程目标的新提法:学段目标的表述方式有所改变(1)、“双基”为何要发展为“四基”?体现数学教育三维目标:知识与技能;过程与方法;情感、态度和价值观。符合素质教育的理念,有利于培养创新型人才。(2)获得基本的数学思想数学思想是对数学知识的本质的认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学认识过程中提炼上升的数学观点,它在认识活动中被反复运用带有普遍的指导意义是建立数学和用数学解决问题的指导思想。----钱佩玲主编《中学数学思想方法》数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中。---------高考考试大纲的说明数学抽象的思想派生出的有:分类的思想;集合的思想;数形结合的思想;变中有不变的思想;符号表示的思想;对称的思想;对应的思想;有限与无限的思想等。《标准》中“数学的基本思想”主要指:数学抽象的思想;数学推理的思想;数学模型的思想。数学推理的思想派生出的有:归纳的思想;演绎的思想;公理化思想;转换与化归的思想;联想与类比的思想;逐步逼近的思想;代换的思想;特殊与一般的思想等。数学模型的思想派生出的有:简化的思想;量化的思想;函数的思想;方程的思想;优化的思想;随机的思想;抽样统计的思想等。数学方法具有层次性,较高层次的有:演绎推理的方法,合情推理的方法,变量替换的方法等价变形的方法,分类讨论的方法等。较低层次的有分析法,综合法,穷举法,反证法,构造法待定系数法,数学归纳法,递推法,消元法,降幂法,换元法,配方法,列表法,图象法等。(3)、数学方法:在用数学思想解决具体问题时,会形成程序化的操作,就构成数学方法。“活动经验”与“活动”密不可分,要有“动”——手动、口动和脑动。既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的活动,也包括课程教学中特意设计的活动。(4)、获得基本的活动经验数学基本活动经验是学生从数学的角度进行思考,通过亲身经历数学活动过程所获得的具有个性特征的经验。应具有主体性、实践性、发展性、多样性等特征。学生只有积极参与数学课程的教学过程,经过独立思考,探索实践,合作交流等,才有可能积累数学活动经验。《标准》中设置“综合与实践”的课程内容,强调以问题为载体,让学生在解决问题的实践中获得数学活动经验。“四基”是一个有机的整体11.新的知识结构四大知识领域名称的变化:实验稿:数与代数、空间与图形、统计与概率、实践和综合运用。修订稿:数与代数、图形与几何、统计与概率、综合与实践。决定内容的增、删和调整的因素:(1)前后学段知识的衔接;(2)学生生活经验和未来生活实践;(3)学生的接受能力和水平;(4)对学科本质以及核心概念的体现。数与代数在内容结构上没有变化,在教学要求上有新的变化。第一学段(一至三年级)①增加“能进行简单的整数四则混合运算(两步)”(提高要求)②使一些目标的表述更加准确。例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。第二学段(四至六年级)①增加的内容:增加“经历与他人交流各自算法的过程,并能表达自己的想法”。增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。(回归)增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。(回归)增加“结合简单的实际情境,了解等量关系,并能用字母表示”。②调整的内容将“理解等式的性质”,改为“了解等式的性质”。将“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,改为“能解简单的方程(如3x+2=5,2x-x=3)”。③使一些目标的表述更加准确和完整。例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。图形与几何第一学段①删除的内容(整体上看,降低要求)★删除“能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形”,并将相关要求放在第二学段。删除“能在方格纸上画出简单图形的轴对称图形”,并将相关要求放在第二学段。删除“会看简单的路线图”,相关要求放入第二学段。删除“体会并认识千米、公顷”,相关要求放入第二学段。②降低要求★对于“东北、西北、东南、西南”四个方向,不要求给定一个方向辨认其余方向,降低要求为知道这些方向。③使一些目标的表述更加准确和完整。★例如将“辨认从正面、侧面、上面观察到的简单物体的形状”改为“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状”。第二学段①删掉“了解两点确定一条直线和两条相交直线确定一个点。②增加“知道扇形”。③使一些目标的表述更加准确和完整。例如将“探索并掌握圆的周长公式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式”。统计与概率统计内容的主要变化★第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字
本文标题:学习数学课程标准-53页
链接地址:https://www.777doc.com/doc-6837210 .html