您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 关于调和函数的论文(整理版)
毕业论文题目:(,)HS函数类的性质学院:数学科学学院专业:数学与应用数学届别:2008届学号:0821111009姓名:胡孔勇指导老师:韩雪、华侨大学教务处印制2012年5月1目录:摘要..............................................................................................................................................................2Abstract......................................................................................................................................................3引言:..........................................................................................................................................................4主要结论及证明..........................................................................................................................................51.单叶保向性........................................................................................................................................52.模偏差估计........................................................................................................................................63.k拟共形映照.................................................................................................................................74.双向Lipschitz性质...........................................................................................................................85.凸组合的情况....................................................................................................................................96.邻域的定义及相关性质..................................................................................................................107.凸区域性质......................................................................................................................................118.卷积的定义及性质..........................................................................................................................12致谢语:......................................................................................................................................................13参考书目....................................................................................................................................................132摘要本文对保向单叶调和函数类HS中的一类子族(,)HS的性质进行研究,由已知类似函数类的性质推导这类函数族的单叶性,保向性,摸偏差估计,拟共形性质,邻域的相关性质,以及其他性质,并得到一些合理的结论。关键词:调和函数,(,)HS函数类,单叶性,模偏差,拟共形,邻域3AbstractInthispaper,wewilldosomeresearchaboutafunction-class(,)HS,whichisonesubclassofHS.AndHSstandsforthefunctionswhichareharmonicunivalentandsensepreservingintheunitdiskU.Wederivatesomepropertiesaboutthefunctionsin(,)HSfromsomeconclusionwehaveknown,suchasunivalentandsensepreserving,absolutevaluedeviation,biLipschitz,—neighborhood,andsoon.Fromthiscertificateprocess,weobtainsomereasonableresults.Keywordsharmonicfunction,(,)HSsubclass,sensepreservingabsolutevaluedeviation,—neighborhood4引言:设()fzuiv为定义在区域D上具有二阶连续偏导数的函数,如22220fffxy,则()fz为D上的调和函数。令{|||1}Uzz为单位圆盘,()fz为定义在U上的单区域叶保向调和函数,由区域U的单连通性我们知道存在()hz和()gz为U上的解析函数,使得()()()fzhzgz,又因为()fz单叶保向,故由Lewy定理知()fz的Jacobian恒正(即'2'2|()||()|0fJhzgz),若进一步存在常数01k,使得''|()||()|gzkhz,则称()fz为U上的调和k-拟共形映照。设()()()fzhzgz为定义在单位圆盘{|||1}Uzz上的调和函数,其中2()nnnhzzaz,1()nnngzbz………………………………(1)为U上的解析函数,令,(0,1),则定义12(,)|()()(),(1)(||||)1||11nnnnnHSffzhzgzhgabb其中,由式表示,且为U上的一类调和函数。5主要结论及证明1.单叶保向性结论:若定义在U上的调和函数(),fHS,则()fz是单叶保向调和函数。证明:①.单叶性按照定义,对12,zzU,且12zz,则有:1212121211|()()||()()|nnnnnnnnfzfzzzazzbzz112122(1||)||(||||)||nnnnnbzzabzz112(1||)||bzz1112122(||||)|||...|nnnnnabzzzz112122(1||)||(||||)||nnnnnbzznabzz112(1||)||bzz122(||||)||11nnnnnabzz112112(1||)||(1||)||bzzbzz0即对12zz,12|()()|0fzfz,故()fz是单叶的。②.保向性:对zU,有:'2'2''''|()||()|(|()||()|)(|()||()|)fJhzgzhzgzhzgz''1121(|()||()|)(|1|||)nnnnnnhzgznaznbz6''112(|()||()|)(1||(||||)||)nnnnhzgzbnabz''212(|()||()|)(1||(||||)||)11nnnnnhzgzbabz''211(|()||()|)(1||(1||)||)hzgzbbz''21(|()||()|)(1||)(1||)hzgzbz0故()fz是保向的。2.模偏差估计结论:若()(,)fzHS,令||1zr,则有21|()|(1||)()fzbrr,且211|()|(1||)(1||)fzbrbr证明:设()fz是U上的调和函数,且()(,)fzHS,则22|()|||nnnnnnfzzazbz12(1||)||(||||)||nnnnbzabz212(1||)||(||||)||11nnnnnbzabz211(1||)(1||)brbr21(1||)()brr另一方面:22|()|||nnnnnnfzzazbz12(1||)||(||||)||nnnnbzabz212(1||)||(||||)||11nnnnnbzabz211(1||)(1||)brbr73.k拟共形映照结论:设()(,)fzHS,则()fz为k拟共形映照。证明:设()(,)fzHS,由(1)式得122||1||||11nnnnnnabb再由1nn,1nn得22||||1nnnnnnaa,11||||1nnnnnnbb则有''()||()gzhz1112|||1|nnnnnnnbznaz122||||1||nnnnbnbna122(1)||||11||nnnnnnbbnna1222(1)||||211||nnnnnbbna11222(1)||(1||||)211||1nnnnnbbana12||2(1)2(1)(1)1221||1nnbkna故,()fz为k拟共形映照。84.双向Lipschitz性质结论:设()(,)fzHS,则当012时,()fz为双向Lipschitz函数,即有111121212(2)(1||)4(1||)2(1||)|||()()|||22bbbzzfzfzzz证明:设()(,)fzHS,则122||||1||11nnnnnna
本文标题:关于调和函数的论文(整理版)
链接地址:https://www.777doc.com/doc-6837527 .html