您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高考数学考点归纳之-圆的方程
高考数学考点归纳之圆的方程一、基础知识1.圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(x-a)2+(y-b)2=r2(r>0)❶圆心:(a,b),半径:r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0)❷圆心:-D2,-E2,半径:12D2+E2-4F❶标准方程强调圆心坐标为(a,b),半径为r.❷(1)当D2+E2-4F=0时,方程表示一个点-D2,-E2;(2)当D2+E2-4F<0时,方程不表示任何图形.2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.二、常用结论(1)二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(2)以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.考点一求圆的方程[典例](1)圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=4(2)圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的方程为________.[解析](1)根据题意可设圆的方程为x2+(y-b)2=1,因为圆过点A(1,2),所以12+(2-b)2=1,解得b=2,所以所求圆的方程为x2+(y-2)2=1.(2)法一:几何法设点C为圆心,因为点C在直线x-2y-3=0上,所以可设点C的坐标为(2a+3,a).又该圆经过A,B两点,所以|CA|=|CB|,即2a+3-22+a+32=2a+3+22+a+52,解得a=-2,所以圆心C的坐标为(-1,-2),半径r=10,故所求圆的方程为(x+1)2+(y+2)2=10.法二:待定系数法设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题意得2-a2+-3-b2=r2,-2-a2+-5-b2=r2,a-2b-3=0,解得a=-1,b=-2,r2=10,故所求圆的方程为(x+1)2+(y+2)2=10.法三:待定系数法设圆的一般方程为x2+y2+Dx+Ey+F=0,则圆心坐标为-D2,-E2,由题意得-D2-2×-E2-3=0,4+9+2D-3E+F=0,4+25-2D-5E+F=0,解得D=2,E=4,F=-5.故所求圆的方程为x2+y2+2x+4y-5=0.[答案](1)A(2)x2+y2+2x+4y-5=0[题组训练]1.已知圆E经过三点A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.x-322+y2=254B.x+342+y2=2516C.x-342+y2=2516D.x-342+y2=254解析:选C法一:根据题意,设圆E的圆心坐标为(a,0)(a>0),半径为r,则圆E的标准方程为(x-a)2+y2=r2(a>0).由题意得a2+12=r2,2-a2=r2,a2+-12=r2,解得a=34,r2=2516,所以圆E的标准方程为x-342+y2=2516.法二:设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则由题意得1+E+F=0,4+2D+F=0,1-E+F=0,解得D=-32,E=0,F=-1,所以圆E的一般方程为x2+y2-32x-1=0,即x-342+y2=2516.法三:因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-12=2(x-1)上.又圆E的圆心在x轴的正半轴上,所以圆E的圆心坐标为34,0.则圆E的半径为|EB|=2-342+0-02=54,所以圆E的标准方程为x-342+y2=2516.2.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________________.解析:过切点且与x+y-1=0垂直的直线方程为x-y-5=0,与y=-4x联立可求得圆心为(1,-4).所以半径r=3-12+-2+42=22,故所求圆的方程为(x-1)2+(y+4)2=8.答案:(x-1)2+(y+4)2=83.已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________________.解析:设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),将P,Q两点的坐标分别代入得2D-4E-F=20,3D-E+F=-10.①②又令y=0,得x2+Dx+F=0.③设x1,x2是方程③的两根,由|x1-x2|=6,得D2-4F=36,④联立①②④,解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.答案:x2+y2-2x-4y-8=0或x2+y2-6x-8y=0考点二与圆有关的轨迹问题[典例](1)点P(4,-2)与圆x2+y2=4上任意一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1(2)已知圆C:(x-1)2+(y-1)2=9,过点A(2,3)作圆C的任意弦,则这些弦的中点P的轨迹方程为________.[解析](1)设圆上任意一点为(x1,y1),中点为(x,y),则x=x1+42,y=y1-22,即x1=2x-4,y1=2y+2,代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.(2)设P(x,y),圆心C(1,1).因为P点是过点A的弦的中点,所以PA―→⊥PC―→.又因为PA―→=(2-x,3-y),PC―→=(1-x,1-y).所以(2-x)·(1-x)+(3-y)·(1-y)=0.所以点P的轨迹方程为x-322+(y-2)2=54.[答案](1)A(2)x-322+(y-2)2=54[变透练清]1.变条件若将本例(2)中点A(2,3)换成圆上的点B(1,4),其他条件不变,则这些弦的中点P的轨迹方程为________.解析:设P(x,y),圆心C(1,1).当点P与点B不重合时,因为P点是过点B的弦的中点,所以PB―→⊥PC―→.又因为PB―→=(1-x,4-y),PC―→=(1-x,1-y).所以(1-x)·(1-x)+(4-y)·(1-y)=0.所以点P的轨迹方程为(x-1)2+y-522=94;当点P与点B重合时,点P满足上述方程.综上所述,点P的轨迹方程为(x-1)2+y-522=94.答案:(x-1)2+y-522=942.已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.[课时跟踪检测]A级1.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为()A.(x+1)2+(y+1)2=2B.(x-1)2+(y-1)2=2C.(x+1)2+(y+1)2=8D.(x-1)2+(y-1)2=8解析:选B直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x-1)2+(y-1)2=2.2.若圆x2+y2+2ax-b2=0的半径为2,则点(a,b)到原点的距离为()A.1B.2C.2D.4解析:选B由半径r=12D2+E2-4F=124a2+4b2=2,得a2+b2=2.∴点(a,b)到原点的距离d=a2+b2=2,故选B.3.以(a,1)为圆心,且与两条直线2x-y+4=0与2x-y-6=0同时相切的圆的标准方程为()A.(x-1)2+(y-1)2=5B.(x+1)2+(y+1)2=5C.(x-1)2+y2=5D.x2+(y-1)2=5解析:选A由题意知,圆心到这两条直线的距离相等,即圆心到直线2x-y+4=0的距离d=|2a-1+4|5=|2a-1-6|5,解得a=1,d=5,∵直线与圆相切,∴r=d=5,∴圆的标准方程为(x-1)2+(y-1)2=5.4.(2019·银川模拟)方程|y|-1=1-x-12表示的曲线是()A.一个椭圆B.一个圆C.两个圆D.两个半圆解析:选D由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=1-x-12表示的曲线是两个半圆,选D.5.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆的圆心坐标为()A.(-2,-4)B.-12,-1C.(-2,-4)或-12,-1D.不确定解析:选A∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=-1或a=2.当a=-1时,方程化为x2+y2+4x+8y-5=0.配方,得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a=2时,方程化为x2+y2+x+2y+52=0,此时方程不表示圆.故选A.6.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x+1)2+y2=8C.(x-1)2+y2=2D.(x-1)2+y2=8解析:选A直线x-y+1=0与x轴的交点(-1,0).根据题意,圆C的圆心坐标为(-1,0).因为圆与直线x+y+3=0相切,所以半径为圆心到切线的距离,即r=d=|-1+0+3|12+12=2,则圆的方程为(x+1)2+y2=2.7.圆C的直径的两个端点分别是A(-1,2),B(1,4),则圆C的标准方程为________.解析:设圆心C的坐标为(a,b),则a=-1+12=0,b=2+42=3,故圆心C(0,3).半径r=12|AB|=12[1--1]2+4-22=2.∴圆C的标准方程为x2+(y-3)2=2.答案:x2+(y-3)2=28.已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,6)在圆C内,则m的取值范围为________.解析:设圆心为C(a,0),由|CA|=|CB|,得(a+1)2+12=(a-1)2+32,解得a=2.半径r=|CA|=2+12+12=10.故圆C的方程为(x-2)2+y2=10.由题意知(m-2)2+(6)2<10,解得0<m<4.答案:(0,4)9.若一个圆的圆心是抛物线x2=4y
本文标题:高考数学考点归纳之-圆的方程
链接地址:https://www.777doc.com/doc-6840743 .html