您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初一数学分节随堂练习
第一章有理数1.1正数和负数班级:姓名:1、举出几对具有相反意义的量,并分别用正、负数表示.2、在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,那么-0.03克表示什么?表示:。3、2001年美国的商品进出口总额比上年减少6.4%可记为,中国增长7.5%可记为.4、某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.455.填空-1,2,-3,4,-5,,,…第81个数是,第2005个数是.6.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4,那么8年前记作.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2kg,则小阳增长了.7.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?8.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.甲:乙:丙:9.有没有这样的有理数,它既不是正数,也不是负数?10.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,正数:;负数:11.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,你知道他们最早的同学到,最迟的是到,最早的比最迟的早到个小时.12.冷库A的温度是-5℃,冷库B的温度是-15℃,则温度高的是冷库.1.2.1有理数(1)有理数正整数整数零正分数分数负分数(2)有理数正整数正有理数正分数零负整数负有理数负分数1.把下列各数填入相应的集合内:127,3.1416,0,2004,-85,-0.23456,10%,10.l,0.67,-89正数集合负数集合整数集合分数集合2.下列正确的是()①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个3.如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.。4.观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是.5.把下列各数填入相应的大括号内:-7,0.125,12,-312,3,0,50%,-0.3(1)整数集合{}(2)分数集合{}(3)负分数集合{}(4)非负数集合{}(5)有理数集合{}6.下列说法正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数…………7.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是千克.8.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2-12-130-1-210(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?9.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?10.某市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃B.-4℃C.8℃D.-8℃1.2.2数轴1.所有的__________都可以用数轴上的点表示___________都在原点的左边,______________都在原点的右边.2.下列所画数轴对不对?如果不对,指出错在哪里.①45231②-10231③-1-2021④0⑤-101⑥-1-20-321⑦-1-2021答:①②③④⑤⑥⑦3.试一试:用你画的数轴上的点表示4,1.5,-3,-73,04.下列语句:①数轴上的点又能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个5.(1)与原点的距离为2.5个单位的点有个,它们分别表示有理数和.(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7个单位到达终点,那么终点表示的数是.]6.在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.7.数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是()A.1998或1999B.1999或2000C.2000或2001D.2001或20028.在数轴上,离原点距离等于3的数是________.9.一条直线的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图:M5M4M3M2M1-1-2-5-40-354231(1)点M4和M2所表示的有理数是什么?(2)点M3和M5两点间的距离为多少?(3)怎样将点M3移动,使它先达到M2,再达到M5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?1.规定了、、叫数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是.3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别.6.是最小的正整数,是最小的非负数,是最大的非正数.7.与原点距离为3.5个单位长度的点有个,它们分别是和.8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3139.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.10.下列四个数中,在-2到0之间的数是()A.-1B.1C.-3D.31.2.3相反数1.填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是,a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.2.下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个3.化简下列各符号:(1)-[-(-2)](2)+{-[-(+5)]}(3)-{-{-…-(-6)}…}(共n个负号)【提示】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.4.数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,点B和点C各对应什么数?5.如图所示,数轴上的点A所表示的是实数a,则点A到原点的距离是___________.a0A6.判断题(1)-3是相反数()(2)-7和7是相反数()(3)-a的相反数是a,它们互为相反数()(4)符号不同的两个数互为相反数()7.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,38.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数D.负数或09.一个数比它的相反数小,这个数是()A.正数B.负数C.非负数D.非正数10.数轴上表示互为相反数的两个点之间的距离为423,则这两个数是.11.比-6的相反数大7的数是.12.若a与a-2互为相反数,则a的相反数是.13.(1)-(-8)的相反数是,(2)+(-6)是的相反数.(3)的相反数是a-1.(4)若-x=9,则x=.14.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示,并将这6个数用“”连接起来.M0-3【答案】15.-34的相反数是()A.34B.-34C.43D.-431.2.4绝对值(第一课时)1.例题填空:(1)绝对值等于4的数有个,它们是.(2)绝对值等于-3的数有个.(3)绝对值等于本身的数有个,它们是.(4)①若│a│=2,则a=.②若│-a│=3,则a=.(5)绝对值不大于2的整数是.2.绝对值为4的数是()A.±4B.4C.-4D.23.填空题(1)-│-3│=,+│-0.27│=,-│+26│=,-(+24)=.(2)-4的绝对值是,绝对值等于4的数是.│3.14-|=.(3)若│x│=2,则x=,若│-x│=2,则x=.若│-x│=3,则x=.(4)绝对值小于3的所有整数有.4.选择题(1)则│a│≥0,那么()A.a0B.a0C.a≠0D.a为任意数(2)若│a│=│b│,则a、b的关系是()A.a=bB.a=-bC.a+b=0或a-b=0D.a=0且b=0(3)下列说法不正确的是()A.如果a的绝对值比它本身大,则a一定是负数B.如果两个数相等,那么它们的绝对值也必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近(4)若│x│+x=0,则x一定是()A.负数B.0C.非正数D.非负数5.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.6.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15-10+30-20-40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?1.2.4绝对值(第二课时)例1比较下列各组数的大小(1)-56和-2.7(2)-57和-34解:(1)∵|-56|=56│-2.7│=2.7,而56<2.7∴-56-2.7(2)∵|-57|=57=2028,|-34|=34=2128,而2028<2128∴-57>-34例2按从大到小的顺序,用“〈”号把下列数连接起来.-412,-(-23),│-0.6│,-0.6,-│4.2│解:∵-(-23)=23,│-0.6│=0.6,-│4.2│=-4.2而|-412|=412,│-0.6│=0.6,│-4.2│=4.2且4124.20.6,0.623∴-412-│4.2│-0.6│-0.6│-(-23)1.填空题,用“〉”、“=”、“〈”填空:①-7-5②-0.1-0.01③-│-3.2│-(-3.2)④-│-103│-3.34⑤-89-87⑥-(-14)0.025⑦--3.14⑧-2223-2022032.解答题(1)比较-78和-67的大小,并写出比较过程.1.3.1有理数的加法(第一课时)1.计算(1)(-4)+(-6)=(2)(+15)+(-17)=(3)(-39)+(-21)=(4)(-6)+│-10│+(-4)=(5)(-37)+22=(6)-3+(3)=2.某足球队在一场比赛中上半场负5球,下半场胜4球,那么全场比赛该队净胜球.3.绝对值小于2005的所有整数和为.4.一个数是11,另一个数比11的相反数大2,那么这两个数的和为()A.24B.-24C.2D.-25.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数
本文标题:初一数学分节随堂练习
链接地址:https://www.777doc.com/doc-6867954 .html