您好,欢迎访问三七文档
“数学是思维的科学”逻辑是研究思维形式和规律的科学.逻辑用语是我们必不可少的工具.通过学习和使用常用逻辑用语,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简捷性.下列语句的表述形式有什么特点?你能判断它们的真假吗?(1)若直线a∥b,则直线a和直线b无公共点;(2)2+4=7;(3)垂直于同一条直线的两个平面平行;(4)若x2=1,则x=1;(5)两个全等三角形的面积相等;(6)3能被2整除.以上均为陈述句,(1)(3)(5)为真,(2)(4)(6)为假.命题的概念一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.例1判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5);(6)x15.(7)祝大家新年快乐!222真命题真命题假命题假命题变式:判断下列语句中哪些是命题?是真命题还是假命题?1)作线段AB=CD2)指数函数难道不是增函数吗?3)“合肥八中的高个子”可以构成一个集合4)210xx例1判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5);(6)x15.222上面(2)(4)具有“若p,则q”的形式.在数学中,这种形式的命题是常见的.“若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.其中p叫做命题的条件,q叫做命题的结论.二、命题的结构“若p,则q”其中p叫做命题的条件,q叫做命题的结论.注:任何一个命题都由条件和结论两部分组成。例2指出下列命题中的条件p和结论q;(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分.有一些命题表面上不是“若p,则q”的形式,但可以改写成“若p,则q”的形式,例如:垂直于同一条直线的两个平面平行.解:(1)条件p:整数a能被2整除,结论q:整数a是偶数;(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.若两个平面垂直于同一条直线,则这两个平面平行.例3将下列命题改写成“若p,则q”的形式,并判断真假;(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等;(4)等腰三角形两腰的中线相等;(5)偶函数的图像关于y轴对称;
本文标题:1.1.1-命题
链接地址:https://www.777doc.com/doc-6883181 .html