您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版九年级上册数学全册教案
人教版九年级上册数学全册教案第二十一章一元二次方程21.1一元二次方程教学目标知识技能1.通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.数学思考与问题解决通过丰富的实例,列出一元二次方程,让学生体会一元二次方程是刻画现实世界数量关系的有效模型,培养学生初步形成“模型思想”,增强学生应用数学知识解决实际问题的意识.情感态度使学生经历类比一元一次方程得到一元二次方程概念的过程,减少学生对新知识的陌生感,提高学生学习数学的兴趣.重点难点重点:通过类比一元一次方程,了解一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点:一元二次方程及其二次项系数、一次项系数和常数项系数的识别.教学设计活动一:创设情境1.什么是方程?什么是一元一次方程?2.指出下面哪些方程是已学过的方程?分别是什么方程?(1)3x+4=1;(2)6x-5y=7;(3)43x-5y=0;(4)15y=5;(5)x2-70x+825=0;(6)7+3y-2=4;(7)x(x+5)=150;(8)4x5-y3=0.3.什么是“元”?什么是“次”?活动二:一元二次方程及其相关概念的学习自学教材第2~3页,思考教师所提下列问题:1.问题1中列方程的等量关系是________,所列方程为________,化简后为________.2.问题2中列方程的等量关系是________,为什么要乘12?所列方程为________,化简后为________.3.观察上面化简后的方程,会发现:等号两边都是________,只含有________个未知数,并且未知数的最高次数是________的方程,叫做一元二次方程.4.任何一个方程都要化成它的一般形式,一元二次方程的一般形式为________(a≠________).为什么?5.说出一元二次方程ax2+bx+c=0(a≠0)的二次项、二次项系数、一次项、一次项系数、常数项,在确定各个系数时要注意什么?设计意图:通过设问的方式来加深学生对一元二次方程的理解,排除学生对一元二次方程及其相关概念理解的障碍,让学生体会到一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型,同时,通过设问也给学生学习探究搭建了交流平台.活动三:尝试练习1.判断下列方程是否为一元二次方程.(1)3x+2=5y-3;(2)x2=4;(3)3x2-5x=0;(4)x2-4=(x+2)2;(5)ax2+bx+c=0.2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为()A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,6(答案:1.略;2.B.)活动四:知识拓展例关于x的方程(m+1)x|m|+1+3x=6,当m=________时,该方程是一元二次方程.分析:要使(m+1)x|m|+1+3x=6为一元二次方程,除了考虑未知数的最高次数为2,还要想到m+1≠0.解题过程略.活动五:课堂小结和作业布置课堂小结:1.一元二次方程的概念是什么?一个一元二次方程必须同时满足三个要素:(1)整式;(2)方程整理后含有一个未知数;(3)未知数的最高次数是二次.2.一元二次方程的一般形式是什么?二次项、二次项系数、一次项、一次项系数、常数项的概念分别是什么?作业布置:1.教材第4页练习第1~2题.2.若x2-2xm-1+3=0是关于x的一元二次方程,求m的值.板书设计一元二次方程1.创设情境2.一元二次方程及其相关概念一般形式:ax2+bx+c=0(a≠0)3.尝试练习4.知识拓展5.课堂小结和作业布置21.2.1配方法(2课时)第1课时配方法的基本形式教学目标知识技能1.理解一元二次方程降次的转化思想.2.会利用直接开平方法对形如(x+m)2=n(n≥0)的一元二次方程进行求解.数学思考与问题解决1.会用直接开平方法解简单的一元二次方程.2.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.情感态度1.通过探究活动,培养学生勇于探索的良好学习习惯.2.感受数学的严谨性以及数学结论的确定性.重点难点重点:运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学设计活动一:情境引入印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽叽喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起.”大意是说:一群猴子分成两队,一队猴子数是猴子总数的18的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?(多媒体展示问题.学生互相讨论、分析理解.教师点拨、启发、引导学生分析解题.)设计意图:寓教于乐,可激发学生的探索欲望.活动二:探索发现1.如图,在△ABC中,∠B=90°,点P从点B开始,沿BA边向点A以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?2.能否求下列方程的解?(1)(2t+1)2=8;(2)4(x-3)2=225;(3)9x2-6x+1=0;(4)x2+4x+4=1.(教师引导学生观察、分析、探索.学生小组内交流、探讨知识的发展变化,找出规律,升华为理论知识.)设计意图:通过该活动引导学生探究、发现解一元二次方程的解法.通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.活动三:归纳总结——由感性到理性问题1:你能和同伴交流吗?降次的实质:____________________.降次的方法:____________________.降次体现了________思想.2.如果方程能化成x2=p或(nx+m)2=p(p≥0)的形式,那么可得x=________,或nx+m=________.(学生与同伴交流后将其发现告诉教师并共同探索.)设计意图:进一步体验充满探索与创造的数学活动,感受数学的严谨性和数学结论的确定性.活动四:巩固练习1.教材第6页练习.2.你学会了吗?解下列方程:(1)(12x-2)2=3;(2)2x2-98=0;(3)x2-6x+9=2;(4)10(1+x)2=14.4;(5)(1+x+12)2=2.56;(6)x4-6x2+9=0;(7)14(3x+1)2-15=0.(教师引导,组织学生练习,巡回辅导,重点问题进行强化、点拨方法、总结规律,对学生存在的共性问题做好补教.强调该方法的依据是平方根的意义.学生独立思考解决问题.)设计意图:通过练习,帮助学生熟练掌握开平方法的应用,从而培养学生分析问题、解决问题的能力.活动五:师生小结1.本节课你感受到了什么?2.根据本节课解方程的方法,你能谈谈你的收获吗?3.你认为应该注意什么?4.本节课你的困惑是什么?5.你认为最让你费解的地方在哪里?(教师启发学生回忆.学生可以与同伴交流,也可以请教老师.)设计意图:创造一个平等民主的学习氛围,尽可能地让学生把自己的所思所想表达出来,以期共同提高.活动六:布置作业教材第16页习题21.2第1题.(教师布置作业,学生按要求课外完成.)设计意图:加深认识,深化提高.板书设计配方法的基本形式一、情境引入二、探索发现——降次是解一元二次方程的一般思路三、归纳总结——由感性到理性1.问题12.问题2四、巩固练习1.教材练习2.补充练习五、师生小结六、布置作业第2课时配方法的灵活应用教学目标知识技能1.理解配方法.2.会利用配方法熟练、灵活地解二次项系数为1的一元二次方程.数学思考与问题解决1.会用配方法解简单的一元二次方程.2.发现不同方程的转化方式,运用已有知识解决新问题.3.通过对计算过程的反思,获得解决新问题的经验,体会在解决问题的过程中所呈现的数学方法和数学思想.情感态度1.通过配方法的探究活动,培养学生勇于探索的良好学习习惯.2.感受数学的严谨性以及数学结论的确定性.3.由题目的特点找到与旧知识的联系,将新知化为旧知,从而解决问题.培养学生的观察能力和运用学过的知识解决问题的能力.重点难点重点:用配方法熟练地解二次项系数为1的一元二次方程.难点:灵活地运用配方法解二次项系数不为1的一元二次方程.教学设计活动一:复习引入问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?(1)如何设未知数?根据题目的等量关系如何列出方程?(2)所列方程和之前我们学习的方程x2+6x+9=2有何联系与区别?(3)你能由方程①x2+6x+9=2的解法联想到怎样解方程②x2+6x-16=0吗?(学生完成问题(1),列出方程.如何解这个方程呢?学生观察问题(2),找到联系与区别,教师可点拨启发.问题(3),学生思考、讨论.)设计意图:问题(1)益于培养学生的应用意识,可激发学生的探究欲.问题(2)激起学生学习的欲望.活动二:实验发现我们研究方程x2+6x+7=0的解法:将方程视为x2+2·x·3=-7,配方,得x2+2·x·3+32=32-7,即(x+3)2=2,由此可得x+3=±2,所以x1=-3+2,x2=-3-2.这种解一元二次方程的方法叫做配方法.这种方法的特点是:先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解.总结发现:用配方法解一元二次方程的步骤.①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解;如果右边是一个负数,则判定此方程无实数解.(教师引导学生观察、分析、发现和提出问题.让学生用自己的方法探究一元二次方程的解法.)设计意图:通过引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的意识和能力.培养学生善于总结思考的能力.活动三:用配方法解决问题例解下列方程:(1)x2-2x-35=0;(2)2x2-4x-1=0.分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:(1)x2-2x=35.x2-2x+12=35+12.(x-1)2=36,x-1=±6,x-1=6,x-1=-6,x1=7,x2=-5.可以验证x1=7,x2=-5都是方程x2-2x-35=0的根.(2)x2-2x-12=0,x2-2x=12,x2-2x+12=12+12,(x-1)2=32,x-1=±62,即x-1=62,x-1=-62,x1=1+62,x2=1-62.可以验证x1=1+62,x2=1-62都是方程2x2-4x-1=0的根.(可以让两位学生演示.可给学生提示两边同时除以二次项的系数.验证不可少,但可写也可不写.)设计意图:通过练习,使学生认识到:配方的关键是在方程两边同时添加的常数项等于一次项系数一半的平方(二次项系数必须为1).培养学生做事严谨周密的习惯.活动四:巩固练习1.填空:(1)x2+10x+()=()2;(2)x2-8x+()=(x-)2;(3)x2+x+()=(x+)2;(4)4x2-6x+()=4(x-)2+().2.用配方法解方程:(1)x2+8x-2=0;(2)x2-5x-6=0;(3)x2+7=6x.(教师引导,组织学生练习,巡回辅导,重点问题进行强化、点拨方法、总结规律,共性问题做好补教.学生独立思考解决问题.)设计意图:通过练习,帮助学生熟练掌握方法的应用,从而培养学生分析问
本文标题:人教版九年级上册数学全册教案
链接地址:https://www.777doc.com/doc-6908020 .html