您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 三重积分的几种计算方法
d)(Xf当R3,有X=(x,y,z),d=dv则vzyxfd),,(三重积分1.直角坐标系下三重积分的计算直角坐标系下,记体积元素dv=dxdydzdzdydxyxz0则zyxzyxfvzyxfddd),,(d),,(三重积分zyxzyxfddd),,(yxzzyxfDyxzyxzdd]d),,([),(),(21zzyxfyxyxzyxzxyxybad),,(dd),(),()()(2121xyz0z=z2(x,y)z=z1(x,y)D(1)化成一个定积分和一个二重积分zzyxfyxyxzyxzDd),,(dd),(),(21设D为在xy平面上投影区域.y=y1(x)bay=y2(x)zxyx+y+z=10例1.计算,dddzyxx其中是由平面x+y+z=1与三个坐标面所围闭区域.解:D:0≤y≤1–x,0≤x≤1zyxxdddyxxzxyx101010ddd24111Dx+y=1xyyxDzxyx10ddd例2.计算,ddd)cos(zyxzxy其中是由抛物柱面xy及平面y=0,z=0,所围闭区域2yx,ddd)cos(zyxzxyxDzzxyyx20d)cos(dd解:D:0≤y≤,0≤x≤x2xxzzxyyx20020d)cos(dd21162yxz2xz0xyD02yxy=y1(x,z)z0y=y2(x,z)Dxzyzyxzyxfddd),,(),(),(21d),,(ddzxyzxyDyzyxfzxxzxx=x2(y,z)z0x=x1(y,z)Dyzyxzyxzyxfddd),,(),(),(21d),,(ddzyxzyxDxzyxfzyyz例3.将zyxzyxfddd),,(化为三次定积分,其中是由z=x2+y2和z=1所围的闭区域.解:先对z积分,将向xy平面投影.z=x2+y2x2+y2=1D:x2+y2≤1z=1z=1xyz01Dxyz=1z=x2+y2zyxzyxfddd),,(111112222d),,(ddyxxxzzyxfyxxyz01Dxyz=1z=x2+y2解2:先对y积分,将向xz平面投影:z=x2+y2Dxy:x2≤z≤1,z=11≤x≤1z=x2+y22xzy222d),,(ddddd),,(111xzxzxyzyxfzxzyxzyxfxyz0Dxz112xzy2xzy(2)化为一个二重积分和一个定积分zyxzyxfddd),,(zyxzyxfzDzzd]dd),,([)(21)(dd),,(d21zDzzyxzyxfz:(x,y)D(z),z1≤z≤z20xzyz2zz2D(z)例4.计算,ddyxz其中是由z=x2+y2和z=1所围成的闭区域.xyz01D(z)1解:D(z):x2+y2≤zz[0,1]10ddddzzzyxz)(ddzDyx10dzzz1033z3zz2)(例5.计算解:D(x):0≤y≤1–x,0≤z≤1xyzxy0111x:0≤x≤110ddddxxzyxx102)d(121xxx241)(ddxDzy2)1(21x,dddzyxx其中是由平面x+y+z=1与三个坐标面所围闭区域.D(x)z=1xyxy01x1x2.利用柱面坐标计算三重积分M(r,,z)x=rcosy=rsinz=z(0≤r+,0≤≤2,z+)rzM•0xzyyx柱面坐标的三组坐标面分别为r=常数=常数z=常数xyzo),,(),,(zrzyxrxryrzxyzzxzyzz=r1000cossin0sincosrr故dxdydz=rdrddzzrrzrrfzyxzyxfddd),sin,cos(ddd),,(*例1.计算,ddd22zyxyxz其中由22yxz与z=1所围闭区域.解:D:x2+y2≤122yxzz=122yxzz=r122yxz=0xyz0Dz=rz=1zrzrzyxyxzdddddd*222110220dddrzzrrrrrd2)1(2102215212dddrDzzrrxyz0z=rz=11D例2.计算,dddzyxz={(x,y,z)|x2+y2+z2≤1,z≥0}.解:D:x2+y2≤1221yxz21rzzrzrzyxzdddddd*2101020dddrzzrrrrrd2)1(21024210ddrDzzrdrxyz0121rz例3.再解例1,ddd22zyxyxz其中是由22yxz与z=1所围闭区域.解:用=截得D()而0≤≤2故原积分=*2dddzrzr)(220dddDzrzrxyz110220drzdzrrdxz)(220dddDrzry152z1r01例4.再解例2,dddzyxz其中={(x,y,z)|x2+y2+z2≤1,z≥0}.解:用=截得D()而0≤≤2故原积分=*dddzrzr)(20dddDzrzrxyz02101020dddrzzrr.4xyz021rz011rz)(20dddDrzr3.利用球面坐标计算三重积分M(r,,)x=OPcosz=rcos(0≤r+,0≤≤,0≤≤2)y=OPsin•M0zxyrPxyz=rsincos=rsinsin球面坐标的三组坐标面:r=常数=常数=常数dxdydz=r2sindrddsin),,(),,(2rrzyxdddsin)cos,sinsin,cossin(ddd),,(*2rrrrrfzyxzyxfzxy例5.计算,dddzyxz其中={(x,y,z)|x2+y2+z2≤1,z≥0}.解:x2+y2+z2=1r=1而0≤≤2故用=截得D()原积分*2dddsincosrrr230()dcossinddDrrxyz0xyz0z)(320ddsincosdDrr1032020ddsincosdrr10420242sin2r4011r=1例6.,ddd)(222zyxzyx22yxzΩ是由其中和x2+y2+z2=a2所围成闭区域.解:x2+y2+z2=a2r=a22yxz.4原积分*22dddsinrrr)(420ddsindDrrzyxazyxa)(420ddsindDrrarr044020ddsind)22(515ar=a4z例7.计算,dd)d,,(zyxzyxf次积分,其中为x2+y2+(z1)2≤1.解:x2+y2+(z1)2≤1r=2coscos202020,cossin(ddrfxyz0表为球坐标系中的三zyxzyxfddd),,(zyrrrrdsin)cos,sinsin2
本文标题:三重积分的几种计算方法
链接地址:https://www.777doc.com/doc-6956382 .html