您好,欢迎访问三七文档
三重积分的计算问题:设f(x,y,z)在Ω上可积,研究三重积分dVzyxf),,(的计算方法研究思路:设法将化为dVzyxf),,(dVzyxf),,(先定积分再二重积分(1)先单后重:(2)先重后单:dVzyxf),,(先二重积分再定积分zxyx+y+z=10例1.计算,dddzyxx其中是由平面x+y+z=1与三个坐标面所围闭区域.解:D:0≤y≤1–x,0≤x≤1zyxxdddyxxzxyx101010ddd24111Dx+y=1xyyxDzxyx10ddd例2.计算,ddd)cos(zyxzxy其中是由抛物柱面xy及平面y=0,z=0,所围闭区域2yx,ddd)cos(zyxzxyxDzzxyyx20d)cos(dd解:D:0≤y≤,0≤x≤x2xxzzxyyx20020d)cos(dd21162yxz2xz0xyD02yx例3.将zyxzyxfddd),,(化为三次定积分,其中是由z=x2+y2和z=1所围的闭区域.解:先对z积分,将向xy平面投影.z=x2+y2x2+y2=1D:x2+y2≤1z=1z=1xyz01Dxyz=1z=x2+y2zyxzyxfddd),,(111112222d),,(ddyxxxzzyxfyxxyz01Dxyz=1z=x2+y2解2:先对y积分,将向xz平面投影:z=x2+y2Dxy:x2≤z≤1,z=11≤x≤1z=x2+y22xzy222d),,(ddddd),,(111xzxzxyzyxfzxzyxzyxfxyz0Dxz112xzy2xzy例4.计算,ddyxz其中是由z=x2+y2和z=1所围成的闭区域.xyz01D(z)1解:D(z):x2+y2≤zz[0,1]10ddddzzzyxz)(ddzDyx10dzzz1033z3zz2)(例5.计算解:D(x):0≤y≤1–x,0≤z≤1xyzxy0111x:0≤x≤110ddddxxzyxx102)d(121xxx241)(ddxDzy2)1(21x,dddzyxx其中是由平面x+y+z=1与三个坐标面所围闭区域.D(x)z=1xyxy01x1x例6.计算,ddd22zyxyxz其中由22yxz与z=1所围闭区域.解:D:x2+y2≤122yxzz=122yxzz=r122yxz=0xyz0Dz=rz=1zrzrzyxyxzdddddd*222110220dddrzzrrrrrd2)1(2102215212dddrDzzrrxyz0z=rz=11D例7.计算,dddzyxz={(x,y,z)|x2+y2+z2≤1,z≥0}.解:D:x2+y2≤1221yxz21rzzrzrzyxzdddddd*2101020dddrzzrrrrrd2)1(21024210ddrDzzrdrxyz0121rzoxyz12。面上投影,得到向Dxoy.0,21:xyxD,),(轴的直线作平行与过点zDyx得到.20yz解D.200,21:yzxyx,即例3计算三重积分dxdydzz。其中:平面,0,,2,1zxyxx及yz2所围成的闭区域.例8.于是,zdxdydz22100xydxdyzdzoxyz12D210281xdyydx213241dxx.32522yxz与球面例9.计算,)(222dxdydzzyxI其中,是由锥面2222azyx所围成的区域.解:积分区域如图所示.,cos,sinsin,cossinrzryrx则锥面方程变为;4球面方程变为r=a,区域变为*yxzO运用球面坐标计算,令},0,40,20|),,{(arr故(该题也可选择柱面坐标计算,请读者自行完成.)dxdydzzyxI)(222ddrdrrsin22adrrdd044020sin).22(515ada405sin5241:Ω22及三个坐标面所围区域平面,曲面yxyxzy14x+y=4xzo122yxz.zyxz,y,xfIddd)(Ω计算例10.y14x+y=4xzo1122yxz.取第一卦限部分41:Ω22及三个坐标面所围区域平面,曲面yxyxzzyxz,y,xfIddd)(Ω计算例10.4x+y=4y=0xyzDyxzz,y,xfyxId)(dd1022.Dzzyxfyxyxxd),,(dd..o141:Ω22及三个坐标面所围区域平面,曲面yxyxzzyxz,y,xfIddd)(Ω计算例10.666x+y+z=63x+y=62.例11.x0zyzyxz,y,xfIddd)(Ω计算:平面y=0,z=0,3x+y=6,3x+2y=12和x+y+z=6所围成的区域666x+y+z=63x+y=62.x0zyzyxz,y,xfIddd)(Ω计算:平面y=0,z=0,3x+y=6,3x+2y=12和x+y+z=6所围成的区域3x+y=63x+2y=12x+y+z=6.666x0zy42zyxz,y,xfIddd)(Ω计算:平面y=0,z=0,3x+y=6,3x+2y=12和x+y+z=6所围成的区域3x+y=63x+2y=12x+y+z=6.666x0zy42zyxz,y,xfIddd)(Ω计算:平面y=0,z=0,3x+y=6,3x+2y=12和x+y+z=6所围成的区域z=0y=042x+y+z=6.x0zy666zyxz,y,xfIddd)(Ω计算:平面y=0,z=0,3x+y=6,3x+2y=12和x+y+z=6所围成的区域42.x0zy666:平面y=0,z=0,3x+y=6,3x+2y=12和x+y+z=6所围成的区域zyxz,y,xfIddd)(Ω计算yxDzz,y,xfyxI60)d(dd.D0yx624DyxyyzzyxfxyI603243260d),,(dd.y2=xxyzo例12.所围成的区域。与平面抛物柱面πzx,z,yxy200:Ωzyxz,y,xfIddd)(Ω计算zx222y2=xxyzo所围成的区域。与平面抛物柱面πzx,z,yxy200:Ωzyxz,y,xfIddd)(Ω计算z=0y=022xyzozzyxfyxIxπxπd),,(dd20020。。Dxπzz,y,xfyxI20)d(dd0yx2xyy2=x所围成的区域。与平面抛物柱面πzx,z,yxy200:Ωzyxz,y,xfIddd)(Ω计算D例13由曲面zx22y2及z2x2所围成的闭区域;xyzOzx22y222z2x211Oxyz2zx22y2z2x2If(x,y,z)dxdydz22222221111),,(xyxxxdzzyxfdydx22222221111),,(xyxxxdzzyxfdydx22222221111),,(xyxxxdzzyxfdydx例13由曲面zx22y2及z2x2所围成的闭区域;解1y其中Ω由曲面dVxyI21例14计算积分,zxzxy112222,所界的立体zyx1Ω往xz平面上的投影区域zxDxy122:dVxyI21dxdzdyxyxzDzx][112221zxy221zx122xzDdxdzzxx)(222121111122222121xxdzzxxdx)(1123222213111dxxxxx])([4528解例15计算积分,其中Ω是两个球22222224RzyxRzzyx,dVz2的公共部分zyx2RzR由2222RzyxRzzyx42222Rz采用先重后单方法计算RDzdzdxdyzdVz022}{RDzdzdxdyz02)(dVz2RDzdzdxdyz02)(20222Rdzzzz)(RRdzzRz2222)(548059Rzyx2Rz2222RzyxRzzyx4222例16设,其中Ω由dVyxzI)(224122222zyxyxz,所界解42r1r11222rzyx24222rzyx422yxz214020r,,:zyxDdVyxzI)(22ddrdrrrsinsincos222ddrdr35sincosDdrdrd3520sincos40213520drrddsincos40215320drrddsincos403363dsincos162142r1rzyx例17..)0(24222222体体积所围成的公共部分的立与围柱面求球面aaxyxazyx解:由对称性,所求体积DdxdyyxaV22244yzxoDcos2arxyoa2aD运用极坐标系,则D变成D*:}cos20,20|),{(*arrD式中}20,20|),{(2xaxyaxyxDDrdrdra2244cos20222044ardrradV故.3223323a2033)sin1(332dcacos2022212220)4()4(214ardrradraddraacos20202322)4(32220333)sin88(34daa
本文标题:三重积分例题分析
链接地址:https://www.777doc.com/doc-6956754 .html