您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 计算机考试中各种进制转换的计算方法
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:01100100,转换为10进制为:下面是竖式:01100100换算成十进制第0位0*20=0第1位0*21=0第2位1*22=4第3位0*23=0第4位0*24=0第5位1*25=32第6位1*26=64第7位0*27=0+---------------------------100用横式计算为:0*20+0*21+1*22+1*23+0*24+1*25+1*26+0*27=1000乘以多少都是0,所以我们也可以直接跳过值为0的位:1*22+1*23+1*25+1*26=1002.2八进制数转换为十进制数八进制就是逢8进1。八进制数采用0~7这八数来表达一个数。八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……所以,设有一个八进制数:1507,转换为十进制为:用竖式表示:1507换算成十进制。第0位7*80=7第1位0*81=0第2位5*82=320第3位1*83=512+--------------------------839同样,我们也可以用横式直接计算:7*80+0*81+5*82+1*83=839结果是,八进制数1507转换成十进制数为8392AF5换算成10进制:第0位:5*160=5第1位:F*161=240第2位:A*162=2560第3位:2*163=8192+-------------------------------------10997直接计算就是:5*160+F*161+A*162+2*163=10997(别忘了,在上面的计算中,A表示10,而F表示15)现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。假设有人问你,十进数1234为什么是一千二百三十四?你尽可以给他这么一个算式:1234=1*103+2*102+3*101+4*10010进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。“把要转换的数,除以2,得到商和余数”。那么:要转换的数是6,6÷2,得到商是3,余数是0。(不要告诉我你不会计算6÷3!)“将商继续除以2,直到商为0……”现在商是3,还不是0,所以继续除以2。那就:3÷2,得到商是1,余数是1。“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。那就:1÷2,得到商是0,余数是1(拿笔纸算一下,1÷2是不是商0余1!)“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成二进制,结果是110。把上面的一段改成用表格来表示,则为:被除数计算过程商余数66/23033/21111/201(在计算机中,÷用/来表示)如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除:(图:1)请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。3.210进制数转换为8、16进制数非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。来看一个例子,如何将十进制数120转换成八进制数。用表格表示:被除数计算过程商余数120120/81501515/81711/801120转换为8进制,结果为:170。非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。同样是120,转换成16进制则为:被除数计算过程商余数120120/167877/1607120转换为16进制,结果为:78。请拿笔纸,采用(图:1)的形式,演算上面两个表的过程。4二、十六进制数互相转换二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。我们也一样,只要学完这一小节,就能做到。首先我们来看一个二进制数:1111,它是多少呢?你可能还要这样计算:1*20+1*21+1*22+1*23=1*1+1*2+1*4+1*8=15。然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23=8,然后依次是22=4,21=2,20=1。记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。下面列出四位二进制数xxxx所有可能的值(中间略过部分)仅4位的2进制数快速计算方法十进制值十六进值1111=8+4+2+1=15F1110=8+4+2+0=14E1101=8+4+0+1=13D1100=8+4+0+0=12C1011=8+4+0+1=11B1010=8+0+2+0=10A1001=8+0+0+1=109....0001=0+0+0+1=110000=0+0+0+0=00二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。如(上行为二制数,下面为对应的十六进制):11111101,10100101,10011011FD,A5,9B反过来,当我们看到FD时,如何迅速将它转换为二进制数呢?先转换F:看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8+4+2+1,所以四位全为1:1111。接着转换D:看到D,知道它是13,13如何用8421凑呢?应该是:8+2+1,即:1011。所以,FD转换为二进制数,为:11111011由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。比如,十进制数1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:被除数计算过程商余数12341234/167727777/16413(D)44/1604结果16进制为:0x4D2然后我们可直接写出0x4D2的二进制形式:010010110010。其中对映关系为:0100--41011--D0010--2同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。下面举例一个int类型的二进制数:01101101111001011010111100011011我们按四位一组转换为16进制:6DE5AF1B5原码、反码、补码结束了各种进制的转换,我们来谈谈另一个话题:原码、反码、补码。我们已经知道计算机中,所有数据最终都是使用二进制数表达。我们也已经学会如何将一个10进制数如何转换为二进制数。不过,我们仍然没有学习一个负数如何用二进制表达。比如,假设有一int类型的数,值为5,那么,我们知道它在计算机中表示为:000000000000000000000000000001015转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。现在想知道,-5在计算机中如何表示?在计算机中,负数以其正值的补码形式表达。什么叫补码呢?这得从原码,反码说起。原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。比如00000000000000000000000000000101是5的原码。反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。取反操作指:原为1,得0;原为0,得1。(1变0;0变1)比如:将00000000000000000000000000000101每一位取反,得11111111111111111111111111111010。称:11111111111111111111111111111010是00000000000000000000000000000101的反码。反码是相互的,所以也可称:11111111111111111111111111111010和00000000000000000000000000000101互为反码。补码:反码加1称为补码。也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。比如:00000000000000000000000000000101的反码是:11111111111111111111111111111010。那么,补码为:11111111111111111111111111111010+1=11111111111111111111111111111011所以,-5在计算机中表达为:11111111111111111111111111111011。转换为十六进制:0xFFFFFFFB。再举一例,我们来看整数-1在计算机中如何表示。假设这也是一个int类型,那么:1、先取1的原码:000000000000000000000000000000012、得反码:111111111111111111111111111111103、得补码:11111111111111111111111111111111可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFF。
本文标题:计算机考试中各种进制转换的计算方法
链接地址:https://www.777doc.com/doc-6964465 .html