您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 信号与系统_高等教育何子述版 课件及答案
信号与系统习题一1.7已知连续时间信号波形如图p1.7所示。画出下列信号的波形。a))()(tgtf和)1(tfb))212(tfc))12(tfd))12()1(tgtff))22()(tgtfe))(2)(tgtf0123t21f(t)-2-10t1)(tg0123t21f(t)01234t21f(t-1)信号与系统习题一a)解:信号与系统习题一-10-9-8-7-6-5-4-3-2-10t21f(-2-1/2t)0123t21f(t)b)信号与系统习题一0123t21f(t)21f(2t+1)-1/201/21tc)信号与系统习题一-2-1012t21f(t+1)+g(-t/2-1)30123t21f(t)d)信号与系统习题一0123t21f(t)+2g(-t)3210123t2g(-t)0123t21f(t)-2-10t21g(t)e)4信号与系统习题一101tg(2t-2)0123t21f(t)-2-10t21g(t)1f(t)g(2t-2)f)信号与系统习题一1.13已知离散时间信号,如图p1.13所示,画出信号的奇部和偶部的波形。-3-2-1012345n..21f[n]][nf][nfo][nfe图p1.13信号与系统习题一解:-3-2-1012345n..21f[n]-5-4-3-2-1012345n..21f[-n]-5-4-3-2-1012345n.21fe[n]信号与系统习题一-3-2-1012345n..21f[n]-5-4-3-2-1012345n..21f[-n]-5-4-3-2-1012345n1fo[n].....信号与系统习题一1.18已知连续时间信号如图p1.18所示。(1)用单位阶跃信号的延时组合写出信号的表达式;(2)求下面各式并画出信号波形。-1012345tf(t)12)(tf)(tf)()'tfa)()''tfbdftfct)()())1()(tu图p1.18信号与系统习题一解:)]5()2()[4()]2()([2)]()1()[22()(tututtututututtf)5()4()2()2()(2)1()22(tuttutttutut-1012345tf(t)12(1)信号与系统习题一)5()5()2()(2)1(2ttutututu)5()4()2()2()(2)1()22()(tuttutttututtf)5()4()5()2()2()2()(2)(2)1()22()1(2)('tttutttutttutttutf(2))('tf-1012345t12信号与系统习题一)5()5()2()(2)1(2)('''ttttttf)5()5()2()(2)1(2)('ttututututf-1012345t2-2信号与系统习题一dftft)()()1(1t0)()1(tf01t12)22()(21)1(ttdtft20t122)22()(001)1(tddtft52t1421)4(2)22()(222001)1(ttdddtft5t5.6)4(2)22()(522001)1(dddtf信号与系统习题一)5(5.6)]5()2()[1421()]2()()[12()]()1()[12()(22)1(tutututttututtututttf信号与系统习题二2.6已知LTI离散时间系统输入信号和冲激响应可用序列表示如下:][nf][nh;3,2,1,0}3,1,2,2{][nnf;4,3,2}1,2,1{][nnh1)将表示为单位冲激信号及其延时的加权和的形式,并用系统的LTI特性求系统响应。][nf][ny2)用多项式方法求系统响应。并比较与1)的结果是否相同。][ny信号与系统习题二解:]3[3]2[]1[2][2][nnnnnf]3[3]2[]1[2][2][nhnhnhnhny]7[3]6[7]5[7]4[7]3[6]2[2nnnnnn1)2)42322)(xxxxF43222)(xxxxH765432377762)()()(xxxxxxxHxFxY7,6,5,4,3,2}3,7,7,7,6,2{][nny7,6,5,4,3,2}3,7,7,7,6,2{][nny即与1)的结果是否相同。信号与系统习题二2.10已知因果LTI连续时间系统的微分方程为)(2)(3)('tftyty系统输入为,初始条件为。)()32()(tuttf1)0(y1)直接解微分方程求系统全解。2)求系统的零输入响应和零状态响应,并验证两者之和等于系统全响应。信号与系统习题二解:1))(2)(3)('tftyty特征方程:03r特征根:齐次解:thAety3)(将)()32()(tuttf代入方程右边,,经过整理,方程右边为:0t64t其特解应为同阶的多项式,故设:battyp)(atyp)('故有:0)32(2)(3ttbata3r92234ba092234)(tttyp信号与系统习题二)()()(tytytyph922343tAet将1)0(y代入)(ty得:931A92234931)(3tetyt信号与系统习题二2)0)(tf令特征方程:03r特征根:零输入响应为:tsseAty3)(故有:3r0)(3)('tyty将1)0(y代入)(tys1sA得:tsety3)(92234)(3teAtytff零状态响应为:故有:将0)0(y代入)(tyf922fA92234922)(3tetytf信号与系统习题二)()()(tytytyfs922349313tet将1)0(y代入)(ty得:931A92234931)(3tetyt可见:)()()()(tytytytyfsph信号与系统习题二是门函数)(),()(),()()tgtgthtgtfa2.13已知LTI连续时间系统输入信号和冲激响应如下,求系统响应,画出响应波形示意图。)(tf)(th)(ty)]4()()[cos()()tututtfb)1()1()(tututh信号与系统习题二解:t2/t2/)(tg12/2/)(g1)()()()()(tgtgthtftydtgg)()(2/2/)(g10)(2//2tytt时即当时即当02//22/-tttdtyt2/2/11)(时即当tt02//22/tdtyt2/2/11)(0)(/22/tytt时即当1)信号与系统习题二其它000)(ttttty)(tyt信号与系统习题二2)t1t1)(th1)()()(thtftydthf)()(11)(tht10)(101tytt时即当时即当11210tt)sin()cos()(10tdtyt时即当31412tt0)(516tytt时即当0)cos()(11ttdty时即当53614tt)sin()cos()(41tdtyt其它053)sin(11)sin()(ttttty信号与系统习题二3)tt1)(th1)()()(thtftydthf)()(1)(f10)(0tyt时当时当10tttdttyt2021)1()(时当21t0)(3tyt时当221)(h120001)1()(ttth1221)1()1()(2111ttdtdttytt时当32t96)1(2)(221ttdttyt信号与系统习题二其它032962112211021)(222tttttttttty信号与系统习题二2.18已知LTI连续时间系统由图p2.18所示多个系统相互连接而成,且已知。)2()(),()(),()(),1()(),1()(54'321tthtuthtthtuthtth1)求该系统总的冲激响应;)(th2)讨论系统的记忆性和因果性。)(1th)(2th)(3th)(4th)(5th)(tf)(ty信号与系统习题二解:1))]()([)]()()([)(54321thththththth)]2()([)]()1()1(['ttuttut)2()()()()2()1()()1()2()1()()1(''tttutttutututttut)2()()12()1()1()12()1('tttututttu)2()()1()1()1('tttutttu信号与系统习题二2))2()()1()1()1()('tttutttuth)()(tkth该系统为记忆系统0)(0tht该系统为非因果系统信号与系统习题二2.29已知两个序列其他,0,100,1][nnf其他,0,0,1][Nnnh其中,且为整数,设,试确定N,使得Nn][*][][nhnfny。0]14[,4]3[yy信号与系统习题二012345678910][kfk0123……N][khk……-N-3-2-10][khk……3-N0123]3[khk……14-N……k……]14[kh012345678910解:信号与系统习题二kknhkfny][][][4]3[][]3[][]3[30kkkhkfkhkfy303NN即0]14[][]14[][]14[140kkkhkfkhkfy31114NN即故,3N信号与系统习题三)2(2)()(tttf3.9根据傅里叶变换定义式,计算下列信号的傅里叶变换。a))3()2()(tututfb))(Fc))]5()([)(2tutuetft)1()(3tuetftd)e)f)35)(tetf所示如图9.3)(ptf-2-10123tf(t)19.3p图信号与系统习题三)2(2)()(tttf221)]2(2)([)()(jtjtjedtettdtetfF解:a))3()2()(tututfjeedtedtedtetutudtetfFjjtjtjtjtj3232)]3()2([)()(b)信号与系统习题三jeeejdtedtedtetutuedtetfFjtjtjtjtjtjttj
本文标题:信号与系统_高等教育何子述版 课件及答案
链接地址:https://www.777doc.com/doc-6989870 .html