您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 2016年中考数学真题试题及答案
第1页共8页保密★启用前2016年中考真题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2(1)的结果是()A、12B、2C、1D、22、若∠α的余角是30°,则cosα的值是()A、12B、32C、22D、333、下列运算正确的是()A、21aaB、22aaaC、2aaaD、22()aa4、下列图形是轴对称图形,又是中心对称图形的有()A、4个B、3个C、2个D、1个5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A、40°B、50°C、60°D、80°6、已知二次函数2yax的图象开口向上,则直线1yax经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是()8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A、28℃,29℃B、28℃,29.5℃C、28℃,30℃ABCD第2页共8页D、29℃,29℃9、已知拋物线2123yx,当15x时,y的最大值是()A、2B、23C、53D、7310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A、2B、5C、22D、311、如图,是反比例函数1kyx和2kyx(12kk)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若2AOBS,则21kk的值是()A、1B、2C、4D、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A、1011升B、19升C、110升D、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011的相反数是__________14、近似数0.618有__________个有效数字.15、分解因式:39aa=__________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则'CDCD的值为__________16题图17题图18题图第3页共8页18、如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②'12OOEAOCSS;③2ACAD;④四边形O'DEO是菱形.其中正确的结论是__________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)342.20、已知:12xx、是一元二次方程2410xx的两个实数根.求:2121211()()xxxx的值.21、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到1米,参考数据2≈1.41,3≈1.73)22、如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA的中点,阴影部分的面积为33,求⊙O的半径r.23、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为34.(1)求纸盒中黑色棋子的个数;第4页共8页(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=100%利润进价)25、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=2,求EB的长.26、已知抛物线223(0)yaxaxaa与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.第5页共8页中考数学试题答案一、选择题题号123456789101112答案BACCBDBACBCD二、填空题13.201114.315.(3)(3)aaa16.144°17.2318.①③④三、解答题19.解:原式=2-1-3+2,=0.故答案为:0.20.解:∵一元二次方程x2-4x+1=0的两个实数根是x1、x2,∴x1+x2=4,x1•x2=1,∴(x1+x2)2÷()=42÷=42÷4=4.21.解:在Rt△CEB中,sin60°=,∴CE=BC•sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.2≈10m,答:风筝离地面的高度为10m.22.(1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;第6页共8页(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC=r,∴∠AOB=120°,AB=2r,∴S阴影部分=S△OAB-S扇形ODE=•OC•AB-=-,∴•r•2r-r2=-,∴r=1,即⊙O的半径r为1.23.解:(1)3÷-3=1.答:黑色棋子有1个;(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为.24.解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果功够进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.25.(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB,∴EB=GD;第7页共8页(2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则在△BDH中,∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD;(3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB=,∴EB=GD=.26.解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得x1=-1,x2=3,∴点A的坐标(-1,0),点B的坐标(3,0);(2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a-(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4),设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得,,解得,∴直线CD的解析式为y=x+3;(3)存在.由(2)得,E(-3,0),N(-,0)∴F(,),EN=,作MQ⊥CD于Q,设存在满足条件的点M(,m),则FM=-m,EF==,MQ=OM=由题意得:Rt△FQM∽Rt△FNE,∴=,整理得4m2+36m-63=0,∴m2+9m=,第8页共8页m2+9m+=+(m+)2=m+=±∴m1=,m2=-,∴点M的坐标为M1(,),M2(,-).
本文标题:2016年中考数学真题试题及答案
链接地址:https://www.777doc.com/doc-6994797 .html