您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 一元二次方程+特殊的平行四边形+概率单元测试卷
2014暑假九年级数学补习结业测试题(加油!)一、选择题(每题3分,共30分)1.用配方法解方程2850xx,则配方正确的是().A.2411xB.2421xC.2816xD.2869x2.2013年“五•一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是()A.13B.16C.19D.143.已知一元二次方程032pxx的一个根为3,则p为().A.p=2B.p=4C.p=-2D.p=-44.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC⊥BD时,四边形ABCD是菱形D.当∠DAB=90°时,四边形ABCD是正方形5.3.如图,矩形ABCD的周长为68,它被分成7个全等的矩形,则矩形ABCD的面积为()A.98B.196C.280D.2846.关于x的一元二次方程(a+1)x2-4x-1=0有两个不相等的实数根,则a的取值范围是()A.a>-5B.a>-5且a≠-1C.a<-5D.a≥-5且a≠-1第4题7.如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于()A.144°B.126°C.108°D.72°8.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x-10)=375B.x(x+10)=375C.2x(2x-10)=375D.2x(2x+10)=3759.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是()A.21B.31C.61D.8110.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于F,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④二.填空题(每题3分,共18分)11.某钢铁厂今年1月份钢产量为4万吨,三月份钢产量为4.84万吨,每月的增长率相同,问2、3月份平均每月的增长率是.12.已知平行四边形ABCD的两边AB、AD的长是关于x的方程21024mxmx的两个实根,当m为时,四边形ABCD是菱形,此时菱形的边长为.13.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有3个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球,…通过多次试验后,发现摸到黑球的频率稳定于0.3,则n的值大约是_____14.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是_____15.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为_____16.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程______二、作图(5分)17.已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)三、18.解二元一次方程(3题,共15)五、解答题19.(10分)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明)20.(10分)21.(10分)某商场销售某品牌衬衫,成本每件80元,若按每件120元销售,平均每天可以售出20件.为了扩大销售量,增加盈利,减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫每降价1元,那么平均每天就可以多售出2件;针对这种衬衫的销售情况,请解答以下问题:(1)当销售单价降低8元时,计算每天销售量和销售利润;(2)要想平均每天在这种衬衫上盈利1200元,那么每件衬衫应降价多少元?22.(10分)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.23.(12分)如图,以△ABC三边为边在BC的同一侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)将△CBA绕着点C旋转,可以与哪一个三角形重合,以及旋转的度数(直接写答案);(2)四边形AFED一定是平行四边形吗?如果是,请说明理由;(3)当△ABC满足什么条件时,四边形AFED一定是菱形.(直接写答案,不必说明理由)
本文标题:一元二次方程+特殊的平行四边形+概率单元测试卷
链接地址:https://www.777doc.com/doc-7002682 .html