您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 一元一次不等式不等式组应用题专题精讲
1不等式组应用题专题训练1.迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?2.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,成本总额y最小,最小是多少元?每千克饮料果汁含量果汁甲乙A0.5千克0.2千克B0.3千克0.4千克23.某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)22002600售价(元/台)28003000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?4.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套.已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获的利润为y(元).(1)如果你作为该厂的老板,应如何安排生产计划?请设计出所有生产方案;(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?35.某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y元,求y与x的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?6.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:AB成本(万元/套)2528售价(万元/套)3034(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价-成本)47.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元)10002000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?8、“六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种电动玩具x套,购进B种电动玩具y套,三种电动玩具的进价和售价如下表:(1)用含x、y的代数式表示购进C种电动玩具的套数;(2)求出y与x之间的函数关系式;(3)假设所购进的电动玩具全部售出,且在购销这批玩具过程中需要另外支出各种费用共200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时购进三种电动玩具各多少套?电动玩具型号ABC进价(单位:元/套)405550销售价(单位:元/套)50806559、某校组织七年级学生到军营训练,为了喝水方便,要求每个学生各带一只水杯,几个学生可以合带一个水壶.可临出发前,带队老师发现有51名同学没带水壶和水杯,于是老师拿出260元钱并派两名同学去附近商店购买.该商店有大小不同的甲、乙两种水壶,并且水壶与水杯必须配套购买.每个甲种水壶配4只杯子,每套20元;每个乙种水壶配6只杯子,每套28元.若需购买水壶10个,设购买甲种水壶x个,购买的总费用为y(元).(1)求出y与x之间的函数关系式(不必写出自变量x的取值范围);(2)请你帮助设计所有可能的购买方案,并写出最省钱的购买方案及最少费用.10、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?61.解:设搭配A种造型x个,则B种造型为(50)x个,依题意,得:8050(50)34904090(50)2950xxxx≤≤解得:3331xx≤≥,∴3133x≤≤∵x是整数,x可取31、32、33,∴可设计三种方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720(元)方法二:方案①需成本:31×800+19×960=43040(元);方案②需成本:32×800+18×960=42880(元);方案③需成本:33×800+17×960=42720(元);∴应选择方案③,成本最低,最低成本为42720元.2.解:(1)依题意得:43(50)150yxxx(2)依题意得:0.50.2(50)19(1)0.30.4(50)17.2(2)xxxx≤…………≤………解不等式(1)得:30x≤解不等式(2)得:28x≥不等式组的解集为2830x≤≤150yx,y是随x的增大而增大,且2830x≤≤当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,28150178y最小(元)3.解:(1)设生产A型冰箱x台,则B型冰箱为100x台,由题意得:47500(28002200)(30002600)(100)48000xx≤≤解得:37.540x≤≤x是正整数x取38,39或40.有以下三种生产方案:方案一方案二方案三A型/台383940B型/台626160(2)设投入成本为y元,由题意有:22002600(100)400260000yxxx4000y随x的增大而减小当40x时,y有最小值.7即生产A型冰箱40台,B型冰箱50台,该厂投入成本最少此时,政府需补贴给农民(280040300060)13%37960()元4.(1)根据题意列不等式组得:0.5x+0.9(50-x)38x+0.2(50-x)26解之得:35x202,∵x为自然数,∴x=18或19或20因此有以下三种方案可供选择:L型童装18套,M型童装32套;L型童装19套,M型童装31套;L型童装20套,M型童装30套(2)y=15x+1500,∵150,∴y随x的增大而增大,故选取第三套方案x=20此时,y=1800(元),5.解:(1)根据题意,得135(50)410414(50)520xxxx≤≤解得1820x≤≤x为整数181920x,,当18x时,50501832x当19x时,50501931x当20x时,50502030x一共有三种方案:加工原味核桃巧克力18块,加工益智巧克力32块;加工原味核桃巧克力19块,加工益智巧克力31块,加工原味核桃巧克力20块,加工益智巧克力30块.(2)1.22(50)yxx=0.8100x0.80y随x的增大而减小当20x时,y有最小值,y的最小值为84.当加工原味核桃巧克力20块、加工益智巧克力30块时,总成本最低.总成本最低是84元.6.解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.由题意知2090≤25x+28(80-x)≤209648≤x≤50∵x取非负整数,∴x为48,49,50.∴有三种建房方案:A型48套,B型32套;A型49套,B型31套;A型50套,B型30套(2)设该公司建房获得利润W(万元).由题意知W=5x+6(80-x)=480-x∴当x=48时,W最大=432(万元)即A型住房48套,B型住房32套获得利润最大(3)由题意知W=(5+a)x+6(80-x)=480+(a-1)x,∴当Oal时,x=48,W最大,即A型住房建48套,B型住房建32套,当a=l时,a-1=O,三种建房方案获得利润相等当a1时,x=50,W最大,即A型住房建50套,B型住房建30套87.解:⑴设应安排x天进行精加工,y天进行粗加工,根据题意得:x+y=12,5x+15y=140.解得x=4,y=8.答:应安排4天进行精加工,8天进行粗加工.⑵①精加工m吨,则粗加工(140-m)吨,根据题意得:W=2000m+1000(140-m)=1000m+140000.②∵要求在不超过10天的时间内将所有蔬菜加工完,∴m5+140-m15≤10解得m≤5.∴0<m≤5.又∵在一次函数W=1000m+140000中,k=1000>0,∴W随m的增大而增大,∴当m=5时,Wmax=1000×5+140000=145000.∴精加工天数为5÷5=1,粗加工天数为(140-5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.8、解:(1)购进C种玩具套数为:50xy(或41147510xy)(2)由题意得405550(50)2350xyxy整理得230yx.(3)①利润=销售收入-进价-其它费用508065(50)2350200Pxyxy整理得15250Px.②购进C种电动玩具的套数为:5
本文标题:一元一次不等式不等式组应用题专题精讲
链接地址:https://www.777doc.com/doc-7004886 .html