您好,欢迎访问三七文档
X1226具有时钟和日历的功能,时钟依赖时、分、秒寄存器来跟踪,日历依赖日期、星期、月和年寄存器来跟踪,日历可正确显示至2099年,并具有自动闰年修正功能。拥有强大的双报警功能,能够被设置到任何时钟/日历值上,精确度可到1秒。可用软件设置1Hz、4096Hz或32768Hz中任意一个频率输出。X1226提供一个备份电源输入脚VBACK,允许器件用电池或大容量电容进行备份供电。采用电容供电时,用一个硅或肖特基二极管连接到Vcc和充电电容的两端,充电电容连接到Vback管脚,注意不能使用二极管对电池充电(特别是锂离子电池)。切换到电池供电的条件是Vcc=Vback-0.1V,正常操作期间,供电电压Vcc必须高于电池电压,否则电池电量将逐步耗尽。振荡器采用外接32.768kH的晶体,产生的振荡误差可通过软件对数字微调寄存器、模拟微调寄存器的数值进行调节加以修正,避免了外接电阻和电容的离散性对精度的影响。4Kb的EEPROM可用于存储户数据。电路组成及工作原理X1226可与各种类型的的微控制器或微处理器接口,接口方式为串行的I2C接口。其中数据总线SDA是一个双向引脚,用于输入或输出数据。其漏极开路输出在使用过程中需要添加4.7~10kΩ的上拉电阻。本文介绍89C51单片机与X1226的接口方法,由于89C51单片机没有标准的I2C接口,只能用软件进行模拟。图1为了更直观地看到时间的变化,采用8位LED数码管显示年、月、日或时、分、秒,用PS7219A驱动LED数码管,数码管选择0.5英寸共阴极红色或绿色LED数码管。由于PS7219A器件内含IMP810单片机监控器件,复位输出高电平有效,因此在使用51系统时,无须添加监控器件,使用PS7219A的复位输出给51单片机复位即可,监控电压为4.63V。硬件设计原理图如图1所示。在硬件通电调试过程中,不能用手去触摸X1226的晶体振荡器,否则可能会导致振荡器停振,恢复振荡器起振的方法是关闭电源(包括备份电源)后重新上电。另外需要说明的是,测量振荡器时,不要用示波器的探头去测量X2的振荡输出,应该用探头测量PHZ/IRQ的振荡输出,以确定是否起振和振荡频率是否准确,测量时建议在该脚加一个5.1kΩ的上拉电阻。软件设计X1226内含实时时钟寄存器(RTC)、状态寄存器(SR)、控制寄存器(CONTROL)、报警寄存器(Alarm0、Alarm1)和客户存储数据的存储器。由于实时时钟寄存器和状态寄存器需要进行频繁的写操作,因此其存储结构为易失性SRAM结构。其他寄存器均为EEPROM结构,写操作次数通常在10万次以上。X1226初始化程序框图如图2所示,子程序YS4的作用是延时4μs。图2●写操作X1226初始化之后,单片机对X1226进行开始条件的设置,在写CCR或EEPROM之前,主机必须先向状态寄存器写02H,确认应答信号,确认后写入06H,再确认应答信号。确认后启动了写操作,首先发送高位地址,然后发送低位地址。X1226每收到一个地址字节后,均会产生一个应答信号。在两个地址字节都收到之后,X1226等待8位数据。在收到8位数据之后,X1226再产生一个应答,然后单片机产生一个停止条件来终止传送。X1226具有连续写入的功能,每收到1字节后,响应一个应答,其内部将地址加一。当计数器达到该页的末尾时,就自动返回到该页的首地址。这意味着单片机可从某一页的任何位置开始向存储器阵列连续写入64字节,或向CCR连续写入8字节的数据。写入X1226数据子程序:●读操作在上电时,16位地址的默认值为0000H。X1226初始化操作之后,单片机对X1226进行开始条件的设置,在写CCR或EEPROM之前,主机必须先向状态寄存器写02H,确认应答信号,确认后写入06H,再确认应答信号。确认后启动了写操作,首先发送高位地址,然后发送低位地址。X1226每收到一个地址字节后,均会产生一个应答信号。单片机发送另一个开始条件,将R/W位设置为1,接着接受8位数据。单片机终止读操作时,无需等待X1226的应答信号,单片机即可设置停止条件。读出X1226数据子程序:●振荡器频率在线补偿调节X1226集成了振荡器补偿电路,用户可通过软件在线对振荡器频率进行微调,这种微调通常针对两种情况。一种情况是在25℃常温下,对振荡器因器件初始精度带来的频率偏差进行补偿;第二种情况是对因温度引起的频率漂移进行补偿。X1226内部设有数字微调寄存器(DTR)和模拟微调寄存器(ATR),两个寄存器均为非易失性寄存器。数字微调寄存器具有3位数字微调位,调节范围为-30~+30×10-6。模拟微调寄存器具有6个模拟微调位,调节范围为-37~+116×10-6。对于因外界环境温度变化引起的温漂补偿,要依据晶体的温度系数,在存储器中建立补偿参数表,不同厂家晶体的温度系数是不一样的,应根据产品数据手册进行选择。为了能够对温漂进行补偿,要求系统中设置一个温度传感器,并尽量让它靠近X1226,这样可以真实地反映振荡器的温度,原理图如图3所示。单片机首先通过系统温度传感器获取环境温度,并在补偿参数表中获取对应的补偿值,然后将补偿数据填写到相应的微调寄存器中,就能实现温漂补偿的目的。图3由于X1226具有精密的振荡器补偿功能,因此非常适合于环境温度变化较大的应用场合,同时也降低了对晶体性能参数的要求下面还为广大读者介绍一个程序:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AT89C2051时钟程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;定时器T0、T1溢出周期为50MS,T0为秒计数用,T1为调整时闪烁用,;P3.7为调整按钮,P1口为字符输出口,采用共阳显示管。;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;中断入口程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ORG0000H;程序执行开始地址LJMPSTART;跳到标号START执行ORG0003H;外中断0中断程序入口RETI;外中断0中断返回ORG000BH;定时器T0中断程序入口LJMPINTT0;跳至INTTO执行ORG0013H;外中断1中断程序入口RETI;外中断1中断返回ORG001BH;定时器T1中断程序入口LJMPINTT1;跳至INTT1执行ORG0023H;串行中断程序入口地址RETI;串行中断程序返回;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;主程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;START:MOVR0,#70H;清70H-7AH共11个内存单元MOVR7,#0BH;CLEARDISP:MOV@R0,#00H;INCR0;DJNZR7,CLEARDISP;MOV20H,#00H;清20H(标志用)MOV7AH,#0AH;放入熄灭符数据MOVTMOD,#11H;设T0、T1为16位定时器MOVTL0,#0B0H;50MS定时初值(T0计时用)MOVTH0,#3CH;50MS定时初值MOVTL1,#0B0H;50MS定时初值(T1闪烁定时用)MOVTH1,#3CH;50MS定时初值SETBEA;总中断开放SETBET0;允许T0中断SETBTR0;开启T0定时器MOVR4,#14H;1秒定时用初值(50MS×20)START1:LCALLDISPLAY;调用显示子程序JNBP3.7,SETMM1;P3.7口为0时转时间调整程序SJMPSTART1;P3.7口为1时跳回START1SETMM1:LJMPSETMM;转到时间调整程序SETMM;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1秒计时程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;T0中断服务程序INTT0:PUSHACC;累加器入栈保护PUSHPSW;状态字入栈保护CLRET0;关T0中断允许CLRTR0;关闭定时器T0MOVA,#0B7H;中断响应时间同步修正ADDA,TL0;低8位初值修正MOVTL0,A;重装初值(低8位修正值)MOVA,#3CH;高8位初值修正ADDCA,TH0;MOVTH0,A;重装初值(高8位修正值)SETBTR0;开启定时器T0DJNZR4,OUTT0;20次中断未到中断退出ADDSS:MOVR4,#14H;20次中断到(1秒)重赋初值MOVR0,#71H;指向秒计时单元(71H-72H)ACALLADD1;调用加1程序(加1秒操作)MOVA,R3;秒数据放入A(R3为2位十进制数组合)CLRC;清进位标志CJNEA,#60H,ADDMM;ADDMM:JCOUTT0;小于60秒时中断退出ACALLCLR0;大于或等于60秒时对秒计时单元清0MOVR0,#77H;指向分计时单元(76H-77H)ACALLADD1;分计时单元加1分钟MOVA,R3;分数据放入ACLRC;清进位标志CJNEA,#60H,ADDHH;ADDHH:JCOUTT0;小于60分时中断退出ACALLCLR0;大于或等于60分时分计时单元清0MOVR0,#79H;指向小时计时单元(78H-79H)ACALLADD1;小时计时单元加1小时MOVA,R3;时数据放入ACLRC;清进位标志CJNEA,#24H,HOUR;HOUR:JCOUTT0;小于24小时中断退出ACALLCLR0;大于或等于24小时小时计时单元清0OUTT0:MOV72H,76H;中断退出时将分、时计时单元数据移MOV73H,77H;入对应显示单元MOV74H,78H;MOV75H,79H;POPPSW;恢复状态字(出栈)POPACC;恢复累加器SETBET0;开放T0中断RETI;中断返回;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;闪动调时程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;T1中断服务程序,用作时间调整时调整单元闪烁指示INTT1:PUSHACC;中断现场保护PUSHPSW;MOVTL1,#0B0H;装定时器T1定时初值MOVTH1,#3CH;DJNZR2,INTT1OUT;0.3秒未到退出中断(50MS中断6次)MOVR2,#06H;重装0.3秒定时用初值CPL02H;0.3秒定时到对闪烁标志取反JB02H,FLASH1;02H位为1时显示单元熄灭MOV72H,76H;02H位为0时正常显示MOV73H,77H;MOV74H,78H;MOV75H,79H;INTT1OUT:POPPSW;恢复现场POPACC;RETI;中断退出FLASH1:JB01H,FLASH2;01H位为1时,转小时熄灭控制MOV72H,7AH;01H位为0时,熄灭符数据放入分MOV73H,7AH;显示单元(72H-73H),将不显示分数据MOV74H,78H;MOV75H,79H;AJMPINTT1OUT;转中断退出FLASH2:MOV72H,76H;01H位为1时,熄灭符数据放入小时MOV73H,77H;显示单元(74H-75H),小时数据将不显示MOV74H,7AH;MOV75H,7AH;AJMPINTT1OUT;转中断退出;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;加1子程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ADD1:MOVA,@R0;取当前计时单元数据到ADECR0;指向前一地址SWAPA;A中数据高四位与低四位交换ORLA,@R0;前一地址中数据放入A中低四位ADDA,#01H;A加1操作DAA;十进制调整MOVR3,A;移入R3寄存器ANLA,#0FH;高四位变0MOV@R0,A;放回前一地址单元MOVA
本文标题:电路组成及工作原理
链接地址:https://www.777doc.com/doc-7006094 .html