您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 新北师大版八年级数学下册因式分解导学案】
———————————————————————————————————————1第四章因式分解第一节因式分解(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y2-6y+9=()2⑤a3-a=()()在(1)中我们知道从左边推右边是整式乘法;那么在(2)中由多项式推出整式乘积的形式是因式分解。因式分解与整式乘法的相互关系——互逆关系。一、因式分解的定义:把一个多项式化成的形式,这种变形叫做把这个多项式。也可以叫做分解因式。定义解析:(1)等式左边必须是(2)分解因式的结果必须是以的形式表示;(3)分解因式必须分解到每个因式都有不能分解为止。二、合作探究探究一:下列从左到右的变形中,哪些是分解因式?哪些不———————————————————————————————————————2是分解因式?为什么?(1)22111xxxxxx(2)222424abacabc(3)24814(2)1xxxx(4)222()axayaxy(5)2224(2)aabbab(6)2(3)(3)9xxx解:(7)下列从左边到右边的变形,是因式分解的是A、29)3)(3(xxxB、))((2233nmnmnmnmC、)1)(3()3)(1(yyyyD、zyzzyzzyyz)2(2242探究二:连一连:9x2-4y2a(a+1)24a2-8ab+4b2-3a(a+2)-3a2-6a4(a-b)2a3+2a2+a(3x+2y)(3x-2y)三、提升训练1.下列各式从左到右的变形是分解因式的是().A.a(a-b)=a2-ab;B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1);D.x2-yy1=(x+y1)(x-y1)2.连一连:a2-1(a+1)(a-1)a2+6a+9(3a+1)(3a-1)a2-4a+4a(a-b)———————————————————————————————————————39a2-1(a+3)2a2-ab(a-2)2第四章因式分解第二节提公因式法(一)一、学习重难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来.难点:让学生识别多项式的公因式.1、一个多项式中各项都含有的因式,叫做这个多项式各项的.2、公因式是各项系数的与各项都含有的字母的的积多项式ma+mb+mc都含有的相同因式是,多项式3x2-6xy+x都含有的相同因式是。3、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做4.提公因式法分解因式与单项式乘以多项式有什么关系?二、合作探究探究一:找出下列多项式的公因式:(1)3x+6(2)7x2-21x———————————————————————————————————————4(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.探究二:分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.互相交流,总结出找公因式的一般步骤:首先:其次:探究三:用提公因式法分解因式:(1)cbacabba233236128(2))(6)(4)(8axcxabaxa(3)5335yxyx(4)cbacabba233236128———————————————————————————————————————5第四章因式分解第二节提公因式法(二)学习重难点重点:能观察出公因式是多项式的情况,并能合理地进行分解因式.难点:准确找出公因式,并能正确进行分解因式.一、教材精读:1、一个多项式中各项都含有的因式,叫做这个多项式各项的.(1)–2x2y+4xy2–2xy的公因式:(2)a(x–3)+2b(x–3)的公因式:2、如果一个多项式的各项含有公因式,那么就可以把这个提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做二、练习提升探究一:把下列各式分解因式:(1)x(a+b)+y(a+b)(2)3a(x-y)-(x-y)探究二:1.在下列各式等号右边的括号前插入“+”或“–”号,使等式成立:(1)2–a=(a–2)(2)y–x=(x–y)———————————————————————————————————————6(3)b+a=(a+b)(4)(b–a)2=(a–b)2(5)–m–n=(m+n)(6)–s2+t2=(s2–t2)2.把下列各式分解因式:(1)a(x–y)+b(y–x)(2)2(y-x)2+3(x-y)(3)6(p+q)2-12(q+p)(4)a(m-2)+b(2-m)(5)3(m–n)3–6(n–m)2(6)mn(m-n)-m(n-m)2探究三、能力提升1.分解因式:x(a-b)2n+y(b-a)2n+1=_______________________.———————————————————————————————————————7第四章因式分解第三节运用公式法(一)【学习目标】(1)了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)了解提公因式法是分解因式,首先考虑方法,再考虑用平方差公式分解因式.(4)在引导学生逆用乘法公式的过程中,发展学生的观察能力培养学生逆向思维的意识,同时让学生了解换元的思想方法.【学习方法】.自主探究与小组合作交流相结合.【学习重难点】重点:让学生掌握运用平方差公式分解因式.难点:将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.【学习过程】模块一预习反馈一.学习准备:1.请同学们阅读教材的内容,并完成书后习题2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的随堂练习和习题;二.教材精读:1、平方差公式:a2–b2=填空:(1)(x+3)(x–3)=(2)(4x+y)(4x–y)=;(3)(1+2x)(1–2x)=;(4)(3m+2n)(3m–2n)=.2、把(a+b)(a-b)=a2-b2反过来就是a2-b2=a2-b2=中左边是两个数的,右边是这两个数的与这两个数的的。根据上面式子填空:(1)9m2–4n2=;(2)16x2–y2=;(3)x2–9=;(4)1–4x2=.模块二合作探究探究一:把下列各式因式分解:(1)x2-16(2)25–16x2(3)9a2–241b(4)9m2-4n2探究二:将下列各式因式分解:(1)9(x–y)2–(x+y)2(2)2x3–8x(3)3x3y–12xy(4)a4-81———————————————————————————————————————8模块三形成提升1、判断正误:(1)x2+y2=(x+y)(x–y)()(2)–x2+y2=–(x+y)(x–y)()(3)x2–y2=(x+y)(x–y)()(4)–x2–y2=–(x+y)(x–y)()2、下列各式中不能用平方差公式分解的是()A.-a2+b2B.-x2-y2C.49x2y2-z2D.16m4-25n23、分解因式3x2-3x4的结果是()A.3(x+y2)(x-y2)B.3(x+y2)(x+y)(x-y)C.3(x-y2)2D.3(x-y)2(x+y)24、把下列各式因式分解:(1)4–m2(2)9m2–4n2(3)a2b2-m2(4)(m-a)2-(n+b)2(5)(6)-16x4+81y45、分解多项式:(1)16x2y2z2-9;(2)a2b2-m2(2)81(a+b)2-4(a-b)2(4)(m-a)2-(n+b)2模块四小结反思一.这一节课我们一起学习了哪些知识和思想方法?二.本课典型:平方差公式分解因式。三.我的困惑:请写出来:课外拓展思维训练:1.下列多项式中能用平方差公式分解因式的是()A、22)(baB、mnm2052C、22yxD、92x2.分解因式:1.2224)1(aa2.x3-x———————————————————————————————————————9第四章因式分解第三节运用公式法(二)【学习目标】(1)会用完全平方公式进行因式分解;(2)清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.(3)通过观察,推导分解因式与整式乘法的关系,感受事物间的因果联系.【学习方法】.自主探究与小组合作交流相结合.【学习重难点】重点:会用完全平方公式进行因式分解难点:对完全平方公式的运用能力.【学习过程】模块一预习反馈一.学习准备:1.请同学们阅读教材57页~58页的内容,并完成书后习题2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的随堂练习和习题;二.教材精读:1、分解因式学了哪些方法?2、填空:(1)(a+b)(a-b)=;(2)(a+b)2=;(3)(a–b)2=;根据上面式子填空:(1)a2–b2=;(2)a2–2ab+b2=;(3)a2+2ab+b2=;结论:形如与的式子称为完全平方式.由分解因式与整式乘法关系可以看出:如果,那么,这种分解因式的方法叫运用公式法。模块二合作探究探究一:观察下列哪些式子是完全平方式?如果是,请将它们进行因式分解.(1)x2–4y2(2)x2+4xy–4y2(3)4m2–6mn+9n2(4)m2+9n2+6mn(5)x2–x+(6)251056xx探究二:把下列各式因式分解:41———————————————————————————————————————10(1)a2b+b3-2ab2(2);(3)(4)(5)(6)(m2-2m)2-2(m2-2m)+1模块三形成提升1.下列多项式能用完全平方公式分解因式的是()A.m2-mn+n2B.(a+b)2-4abC.x2-2x+41D.x2+2x-12.若a+b=4,则a2+2ab+b2的值是()A.8B.16C.2D.43.如果是一个完全平方式,那么k的值是__________;4.下列各式不是完全平方式的是()A.x2+4x+1B.x2-2xy+y2C.x2y2+2xy+1D.m2-mn+41n25.把下列各式因式分解:(1)x2–4x+4(2)9a2+6ab+b2(3)m2–9132m(4)3ax2+6axy+3ay2(5)–x2–4y2+4xy(6)1682nmnm模块四小结反思一.这一节课我们一起学习了哪些知识和思想方法?二.本课典型:完全平方公式进行因式分解。三.我的困惑:请写出来:课外拓展思维训练:1.若x2+2(m-3)x+16是完全平方式,则m=___________.2.若a2+2a+b2-6b+10=0,则a=___________,b=___________.试说明:无论x、y为何值,3530912422yyxx的值恒为正。第四章因式分解———————————————————————————————————————11第四节十字相乘法【学习目标】1、会用十字相乘法进行二次三项式的因式分解;2、通过自己的不断尝试,培养耐心和信心,同时在尝试中提高观察能力。【学习重难点】重点:能熟练应用十字相乘法进行的二次三项的因式解。难点:准确地找出二次三项式中的常数项分解的两个因数与多项式中的一次项的系数存在的关系,并能区分他们之间的符号关系。【学习方法】自主探究与小组合作交流相结合.模块一预习反馈一.学习准备:(一)、解答下列两题,观察各式的特点并回答它们存在的关系1.(1)(x+2)(x+3)=(2)(x-2)(x-3)=(3)(x-2)(x+3)=(4)(x+2)(x-3)=(5
本文标题:新北师大版八年级数学下册因式分解导学案】
链接地址:https://www.777doc.com/doc-7045929 .html