您好,欢迎访问三七文档
光功能材料固体的光性质,从本质上讲,就是固体和电磁波的相互作用,这涉及晶体对光辐射的反射和吸收,晶体在光作用下的发光,光在晶体中的传播和作用以及光电作用、光磁作用等。基于这些性质,可以开发出光学晶体材料、光电材料、发光材料、激光材料以及各种光功能转化材料等。导带能隙(禁带)价带固体光吸收的本质我们先讨论纯净物质对光的吸收。基础吸收或固有吸收固体中电子的能带结构,绝缘体和半导体的能带结构如图所示,其中价带相当于阴离子的价电子层,完全被电子填满。导带和价带之间存在一定宽度的能隙(禁带),在能隙中不能存在电子的能级。这样,在固体受到光辐射时,如果辐射光子的能量不足以使电子由价带跃迁至导带,那么晶体就不会激发,也不会发生对光的吸收。例如,离子晶体的能隙宽度一般为几个电子伏,相当于紫外光的能量。因此,纯净的理想离子晶体对可见光以至红外区的光辐射,都不会发生光吸收,都是透明的。碱金属卤化物晶体对电磁波透明的波长可以由25μm到250nm,相当于0.05~5ev的能量。当有足够强的辐射(如紫光)照射离子晶体时,价带中的电子就有可能被激发跨过能隙,进入导带,这样就发生了光吸收。这种与电子由价带到导带的跃迁相关的光吸收,称作基础吸收或固有吸收。例如,CaF2的基础吸收带在200nm(约6ev)附近,NaCl的基础吸收约为8ev,Al2O3的基础吸收约在9ev导带激子能级能隙(禁带)价带除了基础吸收以外,还有一类吸收,其能量低于能隙宽度,它对应于电子由价带向稍低于导带底处的能级的跃迁有关。这些能级可以看作是一些电子-空穴(或叫做激子,excition)的激发能级(图2)。处于这种能级上的电子,不同于被激发到导带上的电子,不显示光导电现象,它们和价带中的空穴偶合成电子-空穴对,作为整体在晶体中存在着或运动着,可以在晶体中运动一段距离(~1μm)后再复合湮灭。激子吸收一、激光材料世界上第一台激光器的诞生,使激光技术成为一门新兴科学发展起来,在光学发展史上翻开了崭新的一页。激光的出现又极大的促进了光学材料的发展。到目前为止,就各种激光器而言,已经产生了数百种新型激光工作物质如各种激活晶体和玻璃,半导体、有机液体及气体等。激光材料包括激光工质材料、激光调Q材料、激光调频材料和偏转材料。一、激光的基本原理1、光的吸收和发射辐射与物质的相互作用主要包括受激吸收、自发发射和受激发射。1)受激吸收:当处于低能级E1的原子吸收入射光子,然后跃迁到高能级E2上。这种过程称为受激吸收。2)自发发射:跃迁到能级E2的原子不稳定,它会自发地通过辐射一个能量的光子返回到E1能级上。3)受激发射:处于高能级的原子不仅可以自发发射,而且可以在入射频率ν21的光子感应下受激发射,跃迁到E1能级上。这种过程称为受激发射。2、粒子数反转:要想使受激辐射占优势,就必须使N2大于N1。如果借助于外界的激励,破坏粒子的热平衡分布,就有可能使高能级E2的粒子数N2大于低能级E1的粒子数N1,称为粒子数反转分布。二、激光的产生1、激光器的构成激光器通常由工作物质、激励源和谐振腔三部分组成的。1)工作物质:是激光器中借以发射激光的物质,它是激光器的核心。如含Cr3+的红宝石。2)激励源:为了将工作物质中处于基态的粒子激发到激发态能级,以获得粒子数的反转,就需要激励源供给能量。3)谐振腔:激光器两端各有一反射镜,构成一谐振腔。2、激光工作物质1、激光激励装置3、激光放大谐振腔如红宝石激光激励装置为脉冲氙灯产生激光的材料如红宝石、钇铝石榴石等晶体放大激光装置,一面镜子全反射相应波长的激光,另一面镜子部分透过激光。激光发生装置原理图2、激光的产生当激光工作物质的粒子吸收了外来能量后,就要从基态跃迁到不稳定的高能态,很快无辐射跃迁达到一个亚稳态能级。粒子在亚稳态的寿命较长,所以粒子数目不断积累增加,这就是泵浦过程。当亚稳态粒子数目大于基态粒子数,即实现粒子数反转分布,粒子就要跌落到基态并放出同一性质的光子,光子又激发其他粒子也跌落到基态,释放出新的光子,这样便起到了放大作用。如果光的放大在一个光谐振腔里反复作用,便构成光振荡,并发出强大的激光。激光的特点:1)相干性好。所有发射的光具有相同的相位。2)单色性纯。因为光学共振腔被调谐到某一特定频率后,其他频率的光受到了相消干涉。3)方向性好。光腔中不调制的偏离轴向的辐射经过几次发射后被逸散掉。4)亮度高。激光脉冲有巨大的亮度,激光焦点处的辐射亮度比普通光高108-1010倍。三、激光材料对激光工作物质的要求是,它有一对有利于产生激光的能级,其中的上能级有足够长的寿命,即粒子被激发到该能级后能在其中滞留较长的时间。因而能在该能级上积累比较多的粒子,与下能级之间形成粒子数反转。同时还要求这一对能级间有一定强度的跃迁,以产生激光。工质材料的质量优劣将直接影响激光器件的性能。1、激光材料的特征值1)材料的吸收光谱吸收光谱是指物质在光频范围里的吸收系数按光频率分布的总体。材料的吸收光谱直接表征发光中心与材料的组成、结构的关系,以及环境对它的影响。2)材料的荧光光谱发光物质发射光子的能量按频率分布的总体称为该物质的荧光光谱,也称发射光谱。3)材料的激发光谱激发光谱是指使物质产生发光时激励光按频率分布的总体。通过激发光谱的测定可以确定有效吸收带的位置,即吸收光谱中哪些吸收带对产生某个荧光光谱带是有贡献的。4)荧光量子效率也可表示为荧光转换效率,是表征辐射系统功效大小的物理量,也是激光器的重要参数。荧光量子效率η0定义为发射荧光的光子数n2与被激活物质从激励源吸收的光子数n1之比。η0=n2/n1荧光转换效率取决于工作物质特性、粒子数跃迁方式及无辐射跃迁几率和辐射跃迁几率等因数。常见的三种固体工作物质的量子效率分别为:红宝石为0.7,钕玻璃为0.4,YAG:Nd3+约为1。I;5)激发态寿命荧光强度随时间衰减规律中的特征参量,通常用τ表征。当切断外界激发源后,荧光的强度随时间呈指数型衰减:𝐼=𝐼0𝑒−𝑡τ式中I是任意时刻的荧光强度,I0为t=0时刻的荧光强度,τ为粒子在激发态上的停留时间,称激发态寿命,也称荧光寿命,即辐射荧光强度衰减到初始值的1/e时所经历的时间。6)激光阈值维持激发器内激光振荡不停止的最低条件称为激光阈值。7)激光输出效率以输入激光器的能量Ein作为横坐标,以激光器输出的能量Eout为纵坐标,作出激光器的输出特性曲线。激光器的效率通常有两种定义,一种叫总体效率ηt,又称绝对效率,是指输出能量与输入能量之比:另一种叫斜率效率ηs,是指当输入功率超过阈值很高时,激光器的输出特性曲线接近直线的直线斜率,它反映了输出功率随输入功率的增长速率。8)谐振腔的Q值是指谐振腔的品质因数。inouttEE/2、激光材料的种类1.固体激光工作物质主要用于固体激光器中,它应该具备的基本条件是:材料应具有合适的光谱特性;激发态吸收小;应具有良好的光学均匀性和稳定性;应具有良好的物化性能。主要由激活离子和基质两部分组成。现有的激活离子主要有四类:(1)过渡金属离子:它们的3d电子无外层电子屏蔽,在晶体中受到周围晶体场的直接作用。因此,在不同晶体中,其光谱特性有很大的不同。这类离子包括Ti3+V2+Cr3+Co2+Ni2+和Cu2+。(2)三价稀土离子:它们的4f电子受5s和5p电子的屏蔽,受周围晶体场影响较弱。为了提高效率,须提高掺杂浓度或采用敏化技术。这类离子最常见的为Nd3+,还有Pr3+、Sm3+、Eu3+、Dy3+、Ho3+、Er3+、Tm3+和Yb3+(3)二价稀土离子:它们的4f电子比三价稀土离子多一个,使5d态能量降低,4f-5d跃迁的吸收带处于可见光区,有利于泵浦光的吸收。但这类离子不稳定。(4)锕系离子:U3+离子已能激活基质而产生激光,但其大多数是放射性元素,实用比较困难。固体激光材料的基质包括晶体基质和非晶体(玻璃)基质两类。(1)晶体基质晶体基质可分为掺杂型、自激活型和色心型三种。掺杂型晶体基质是把激活离子掺杂到此基质中。自激活型是把激活离子成为晶体基质的一部分。色心晶体是由束缚在基质格点缺位周围的电子或其他与晶格相互作用形成发光中心。①掺杂型晶体基质:按化学组成有三类:一类是氧化物:如第Ⅲ类元素的氧化物,有红宝石-αAl2O3(Cr3+),掺钕钇铝石榴石(YAG)-Y5Al5O12(Cr3+、Nd3+)等。属于稀土元素的氧化物有掺钕的镧氧化物-La2O3(Nd3+),掺钕的钆氧化物-Gd2O3(Nd3+),掺钬、铥的铒氧化物-Er2O3(Ho3+、Tm3+)、掺钕、铒的钇氧化物-Y2O3(Nd3+、Eu3+)等。属于以第Ⅴ族元素的氧化物作为基质的材料有钒酸盐基质是Ca2VO4、YVO4、GdVO4、LaVO4、ThLn(VO4)3,掺入的杂质有Nd、Eu、Tb、Dy、Er等。掺杂铌酸钙-Ca(NbO3)2(Nd3+、Pr3+、Er3+、Ho3+、Tm3+)和掺杂铌酸锂。属于以第Ⅵ族元素的氧化物为基质的材料有钨酸盐和钼酸盐等。如CaWO4、SrWO4和Na0.5Gd0.5WO4,它们分别可掺Nd3+、Pr3+、Tm3+、Er3+、Ho3+、Dy3+等。二类是非氧化物。主要指一些金属氟化物(LaF3、HoF3、CaF2、SrF2、MgF2、BaF2)作为基质,另加有激活元素的材料。激活元素有U3+,稀土元素Tm3+、Sm3+、Dy3+和某些其他元素Nd3+、Ni2+、Co2+等。三类是其他晶体。这类材料包括氟氧或硫氧阴离子的化合物[Ca5(PO4)3F:Nd3+、Ho3+、La2O2S:Nd3+]氯化物(LaCl3:Pr3+)和溴化物(PrBr3:Pr3+)晶体。②自激活晶体基质:如NdxLa1-xP5O15、LiNdxLa1-xP4O12、KNdxGa1-xP4O12、NdxLa1-xNa5(WO4)4、NdxLa1-xP3O9。③色心晶体基质:主要由碱金属卤化物的离子缺位捕获电子,形成色心。如:LiF、KF、NaCl、KCl:Na、KCl:Li。(2)非晶体基质主要是玻璃,因其容易制成光学质量高的大型元件,能够均匀地掺入高浓度的激活离子,获得高的激光效率等,激光玻璃已成为大能量、高功率固体激光器最重要的工作物质。在玻璃基质中,激活离子除三价钕外几乎所有的稀土离子都先后实现了激光振荡,其中掺钕的激光玻璃性能最好。掺钕激光基质玻璃有硅酸盐玻璃、硼酸盐玻璃、氟化物玻璃、氟磷玻璃等多种。以下是几种国产激光钕玻璃:Na2O-K2O-BaO-B2O3-SiO2Na2O-K2O-CaO-SiO2Na2O-K2O-BaO-Al2O3-ZnO-SiO2Li2O-CaO-SiO2BaO-SrO-Al2O3-P2O5固体激光材料的主要缺点是器件不能做得太大,连续工作有一定的困难。Al2O3红宝石激光材料红宝石激光器能级图红宝石激光材料是Al2O3单晶体掺杂0.05%Cr3+构成,是三能级激光器,产生的激光波长为0.69μm。主要用于精密测距、激光雷达以及打孔、焊接等工业加工流域。晶体结构六方a=4.758Å,c=12.992Å单晶纯度99.99%介电常数9.4(A轴);11.58(C轴)正切损耗2x10-5(A轴)5x10-5(C轴)熔点2040oC密度3.98g/cm3Al2O3蓝宝石单晶材料,Sapphire蓝宝石是Al2O3单晶体掺杂Ti4+构成,有着很好的热特性,极好的电气特性和介电特性,并且防化学腐蚀,它耐高温,导热好,硬度高,透红外,化学稳定性好。广泛用于耐高温红外窗口材料和III-V族氮化物及多种外延薄膜基片材料,用于蓝、紫、白光发光二极管(LED)和蓝光激光器(LD)。化学构成Nd:YAlO3512晶体结构立方生长方向111Nd浓度(原子比)0.9-1.1%晶格常数1.201nm熔点1970℃密度4.56g/cm3莫氏硬度8.5激光波长0.92μm,1.06μm,1.35μm热涨系数7.8x10-6/K于[111]方向掺钕钇铝石榴石激光器能级图掺钕钇铝石榴石(Nd:Y3Al5O12)晶体材料Nd:YAG是当前最重要、应
本文标题:光功能材料
链接地址:https://www.777doc.com/doc-7058783 .html