您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 纺织服装 > 材料力学习题解答11
材料力学习题解答11能量法卡氏定理1.如图所示支架中,AB和AC杆在A处铰接在一起并可看成是刚体,拉杆长L=2m,横截面的直径d=15mm,弹性模量为E=210GPa,载荷F=20kN。试求A点的竖向位移和C点的水平位移。m4H45DABFCE解:由整体平衡有:2FRRCBBRCRNFNF由杆件AB的平衡有:05.22tan25.22sinLFHRmNBALHRFBN5.22tan5.22sin2F2414.0383.04FFN317.0结构总应变能为:EALFEALFUN2317.02222EAFLEAFLFUwA10317.022331514.31021010420001020mm1.0Aw卡氏定理1.如图所示支架中,AB和AC杆在A处铰接在一起并可看成是刚体,拉杆长L=2m,横截面的直径d=15mm,弹性模量为E=210GPa,载荷F=20kN。试求A点的竖向位移和C点的水平位移。m4H45DABFCE解:在C点虚加载荷P,由对称性:2FRRCBBRCRNFNF由杆件AB的平衡有:PP05.22tan25.22sinLFHRPHmNBALRPHFBN)5.22sin(5.22tan22)2/383.0(414.042FPFP159.0828.0结构总应变能为:EALFPEALFUN2)159.0828.0(222EAFLPUuPC159.0828.002331514.310210420001020132.0mm142.0?)(aFaBCEIAF2a2.如图所示各梁的抗弯刚度为EI,试用卡氏定理计算C截面的挠度和B截面的转角。解:(a)xFF21FF2xFxM11)()()(212axFxFxM结构总应变能为:aaaxEIMxEIMU022221d2d2aaaCxFMEIMxFMEIMFUw021221111ddaaaxxEIaxFxFxxEIxF02211d)]([daaaxxEIaxFFxxxEIFx02d)](2[d22)2(3)2(33222333aaEIFaaaEIFaEIF)23732(3EIFaEIFawC6373aEIFaEIFaEIaFwC233)2(2233EIFa6373叠加法:)(aFaBCEIAF2a2.如图所示各梁的抗弯刚度为EI,试用卡氏定理计算C截面的挠度和B截面的转角。解:(a)xFxxM2)(1)(2)(2axFFxmxM结构总应变能为:aaaxEIMxEIMU022221d2d2aaammmBxmMEIMxmMEIMmU020220110ddxEIaxFFxmaamd)](2[20EIFaEIFaEIFaB27223222EIFaB272在B截面处虚加一力偶m。xEIaxFFxaad)](2[2aEIFaaaEIF2)2(322EIFaEIFa27)129(22叠加法:m)(baEIABCDFa2/aF叠加法:EIaFaEIaFwC16)2)(2/(48)2(23EIFaEIFa8633EIFa243EIaFEIaFaEIaFB16)2(3)2)(2/(2)2/(22)413181(2EIFaEIFa2452解:(b)应用能量法计算太麻烦!BqAaCDaa3.如图所示结构,刚架各段的抗弯刚度为EI,拉杆的抗拉刚度为EA。试用卡氏定理计算C点的竖向位移。解:在C截面处虚加一力F。FFaqaaFN22NF1x2xFqaFN2)2(1211FxxqM)2(22FaqaxFMN)2()2(2FaqaxFqaxxqxEIaEAqaFUwaFCd2112/200xaxqaxqaEIad))(22(120EIqaEAqa8242xaxEIqaad)(220EIqaEAqa8242ttEIqaad220EIqaEAqa8242EIqa64EIqaEAqawC247242(向下)EIqaEAqa247242FFamBAaCa)(a4.如图所示各梁的抗弯刚度均为EI,试用卡氏定理求梁支座C处的约束反力。解:(a))0(1axRxMR一次超静定问题。x)2()(2axaRxFaaxFM结构总应变能为:aaaxEIMxEIMU022221d2d20dd022211aaaCxRMEIMxRMEIMRUw0d])([1d102aaaxxRxFaaxFEIxxRxEI0])2[(31])2[(22])2[(3313322333aaRaaFaaaFRa038337RFF0897RFF4FRqBAaCa)(b4.如图所示各梁的抗弯刚度均为EI,试用卡氏定理求梁支座C处的约束反力。解:(b))0(1axmRxM二次超静定问题。)2()(2122axamRxaxqMRmx结构总应变能为:aaaxEIMxEIMU022221d2d20dd022211aaaCxRMEIMxRMEIMRUw0dd022211aaaCxmMEIMxmMEIMmU0d])(21[d)(022aaaxxaxqmRxxxmRx0d])(21[d)(022aaaxaxqmRxxmRx0d)(212)2(3)2(2322223323aaxxaxqaamaaRamaR0d)(212)2(222222xaxqmaaaRmaaRaa0d)(212382223aaxxaxqmaaR0d)(2122222xaxqmaRaaa440222127)3141(d)(d)(aatattxxaxaaa3022231dd)(attxaxaaa0247238423qamaaR0612232qamaRa02472382qamRa061222qamRa0)61247()238(2qaRa081322qaRaqaR163qBAaCa)(bRmx22)81121(121qaRaqam2241qamFaDaABC单位载荷法5.如图所示正方形桁架结构系统,各杆的抗拉刚度均为EA,试用单位载荷法计算B,D两点之间的相对位移。解:FRB求实际载荷作用下各杆的内力。BRAxRAyRFRRAyAxFFBC0ABF0ADDCFFBCFABFBRBDCFADFDBCFACFBCFCBCACFF45cosFFAC2求单位载荷作用下各杆的内力。aDaABC11BRAxRAyR0AyAxBRRR21ADDCABBCFFFF1ABFBCFB1ACF5.如图所示正方形桁架结构系统,各杆的抗拉刚度均为EA,试用单位载荷法计算B,D两点之间的相对位移。解:FFBC0ABF0ADDCFFFFAC221ADDCABBCFFFF1ACFEAlFFiiiiBDFaDaABCEAaFFACAC2EAaFFBCBCEAFaEAFa222EAFa)222(EAFaBC)222((相互靠近)DABCEFF6.如图所示桁架结构系统中各杆的长度均为L,抗拉刚度均为EA,试用单位载荷法计算节点D的竖向位移以及AC,BE两杆件的相对转角。解:求实际载荷作用下各杆的内力。根据对称性有:060sinFFACFFACFCDFCF60FFAC32060cosCDACFFFFCD31030cos)(ADACFFF0ADF060cos)(ADACABFFFFFAB31求单位载荷作用下各杆的内力。DABCE12121ACFADFAABF60F(1)求D点的竖向位移。6.如图所示桁架结构系统中各杆的长度均为L,抗拉刚度均为EA,试用单位载荷法计算节点D的竖向位移以及AC,BE两杆件的相对转角。解:FFAC32FFCD310ADFFFAB31DABCE12121ACFCDFC216031ACF321CDFACFADFAABF60030cos)(ADACFF31ADF060cos)(ADACABFFFFFAB321EAlFFiiiiD)616132(2EAFLEAFL2EAFLwD2(向下)6.如图所示桁架结构系统中各杆的长度均为L,抗拉刚度均为EA,试用单位载荷法计算节点D的竖向位移以及AC,BE两杆件的相对转角。解:FFAC32FFCD310ADFFFAB31(2)求AC,BE杆件的相对转角。求单位载荷作用下各杆的内力。0ACABADFFFDABCE1DECDFFEAlFFuiiiiC2)131(2EAFL11(向左)EAFLuC3DABCE111ABF0ACCDADFFFEAlFFuiiiiA2)131(EAFL(向右)EAFLuA32DABCEAuCuAu160sin)(1CAuuL23)31321(1EAFEAF43DABCE11FFAC32FFCD310ADFFFAB3132ACF31CDF0ADFFFAB31EAlFFwiiiiA231)3134(2EAFLEAFLEAFLEAFLwA611)613134(DABCEAw230sin2AwLEAF12112EAFEAF620)121143(2)(221EAF310AC,BE杆件的相对转角:FaaFL)(a7.如图所示梁的抗弯刚度为EI,试求载荷作用点的挠度和梁端的转角。解:求实际载荷作用下梁的内力。根据对称性有:)0()(1axFxxM(a)FF)2()()(2LaxaFxaxFxM)2(LaxaFa单位载荷作用梁的内力。1aa1L)(ax)0()(1axxxM)2()(2LaxaaxMaLaaFxEIMMxEIMMw022211d)d(22aLaaFxEIFaxEIFxw0222dd2323LEIFaEIFa)(6)32(323LaEIFL)(6)32(32LaEIFLwFFaaFL)(a7.如图所示梁的抗弯刚度为EI,试求载荷作用点的挠度和梁端的转角。解:求实际载荷作用下梁的内力。根据对称性有:)0()(1axFxxM(a)FF)2()()(2LaxaFxaxFxM)2(LaxaFa单位载荷作用梁的内力。)0(1)(1axxM)2(1)(2LaxaxMaLaaFxEIMMxEIMM022211d)d(221aa1L)(axaLaaFxEIFaxEIFx02dd222LEIFaEIFa)(2)(22LaEIFL)(2)1(2LaEIFLFFaaFL)(b7.如图所示梁的抗弯刚度为EI,试求载荷作用点的挠度和梁端的转角。解:求实际载荷作用下梁的内力。根据反对称性有:FLLaR)2((b)RR)0()(1axRxxM)(2112LaFLaLFR)0()()(2axaxFRxxM)2()(LaxaFaxFR单位载荷作用梁的内力。1aa1L)(bx)0(211)(1axxxM
本文标题:材料力学习题解答11
链接地址:https://www.777doc.com/doc-7058928 .html