您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 改进的BP算法在柴油机故障诊断中的应用研究
1009-3486200004-0036-05BP!!!430033BP.6-135ZC..BPTK42A...12..11BP!.!BPBP1MNPy1=y11y12y1mT=x1x2xmTy1mxmi^y2i=M=1w1iy1-!1iw1ii.!1i.y2=y21y22y2IT=f^y21f^y22f^y2IT6393JOURNALOFNAVALUNIVERSITYOFENGINEERING20004!!!1969-.1999-09-27fxI=II+e-axiafx.^y3=^y3I^y32^y3PT=w2yI-!2y3=y3Iy32y3PT=f^y3If^y32f^y3PTiy3^2^2=i-y3^2=^2I^22^2PTEPEP=I2】Pi=Iii-y3i2BPDeltaEP#2lk!2laEPaw2lk=aEPay3lay3la^y3lay^y3law2lk=-il-y3lf'^y3ly2k=-2y2TaEPa!2l=aEPay3lay3la^y3la^y3la!2l=-il-y3lf'^y2l-I=A22=^2。f'^y3aEPawIlkaEPa!Il^II..!.BP3.y=II+e-xy'=yI-yyI-y..yI-y=y-y2=I4-I4-y+y2=I4-I2-y2<I4yI-y>0yI-yI4II6I64.2.BPrrr2r3r6.2...I3739320004TrPSTSPZmaxTZmaxS2Ge!oi!oeITCPfmaxPiNi.6-1357...0101.01.Ax=0Xaxx-a6-()aIa!x6x16!xcxi-xi-()cIc!xix0i!xx⎧⎨⎩⎪⎪⎪⎪⎪⎪⎪⎪11x6cai.2I.I.3.6-135.Axa6ciIt.a6cifIt6-135Sa6cia6cifItSa6cia=GPI6=1-Sytc=1+Syti=2yt-GPI⎧⎨⎩⎪⎪⎪⎪21.83NO.42000JOURNALOFNAVALUNIVERSITYOFENGINEERINGSmNO.932GPIGPI=1p-2!p-2i=1xipxi.3S.4yt.2a6cia6ci1.4..6-135..I=1300r/min11I=1300r/minTrPsTsPzmaxTzmaxsGe!oi!oeITCPfmaxPiNi0.701.000.660.740.501.000.001.001.000.501.000.220.2210000000.830.000.320.700.541.000.001.001.001.001.000.270.2701000001.000.000.000.590.471.000.000.911.000.891.000.240.2400100000.000.000.580.000.201.000.901.000.850.000.730.300.3000010000.750.000.600.800.681.000.501.001.000.000.900.460.4600001000.300.001.000.560.381.000.700.801.000.001.000.140.1400000100.850.000.560.770.601.000.001.001.000.651.000.300.300000001Im45.137I1=m+I+a4mIa1~10.=0.3#=0.7..12.2H=7H=8H=9H=10H=11H=12H=13H=145001.261.160.550.700.750.430.600.8310000.880.410.290.390.360.290.270.3315000.360.340.250.330.300.270.230.3120000.300.320.230.300.290.250.220.3091213....939320004..56.34.!TrPsTsPZmaxTZmaxsCe!oi!oenTCPfmaxPiNi0.500.600.780.800.700.950.l0l.000.900.700.900.300.300.700.050.430.8l0.600.970.000.96l.000.97l.000.300.300.930.l00.l00.400.500.900.000.970.90l.000.950.270.260.200.000.600.540.40l.000.900.980.980.040.980.200.200.300.000.540.650.52l.000.770.90l.000.000.970.l40.l40.900.050.700.850.6l0.970.00l.000.900.700.970.350.350.8020.4490.0l00.0l50.0020.0l00.0l60.08l0.9550.0330.0670.00l0.00l0.l070.0570.0840.9l60.0550.00l0.00l0.0020.0300.0520.0l50.9290.0640.0420.0000.0260.00l0.0370.0520.9470.04l0.0520.0360.00l0.0050.20l0.3520.6420.0l50.0590.0760.0l80.0020.0360.0840.934..6...lHoskinsJCKaliyurKM.HimmelblauDM.FaultdiagnosisincomplexchemicalplantsusingartificialneuralnetworksJ.AIChEJ.l99l37l.2VenkatasubramanianVVaidyanathanRYamamotoY.Processfaultdetectionanddiagnosisusingneuralnetworks--I.Steady-stateprocessJ.Computerschem.Engin.l990l47699-7l2.3.M.l984.4.M.l993.5.M.l993.6.D.l997.4804No.42000JOURNALOFNAVALUNIVERSITYOFENGINEERINGSumNo.93!!l.M.l996.ResearchonmaintainingmonitorandcontrolsystemusingthetheoryofFTAHEGuolXUJian-mao2ZHANGWen-tao2l.CoIIegeofPowerEng.NavaIUniv.ofEngineeringWuhan430033China2.UnitNo.37532Ningbo3l5705ChinaAbstractThreefaiIurephenomenaofmonitorandcontroIsystemsofdieseIwerefoundaboardawarship.ThetheoryoffaiIuretreeanaIysisFTAwasusedtofindoutthefaiIuresinthemonitorsystems.AccordingtotheconstructedfaiIuretreesbasiceventswerecheckedonebyoneandfaiIurepointsinthemonitorsystemswerefoundoutfinaI-Iy.AfterrepairthesystemsaIIfaiIureswereeIiminatedsuccessfuIIyandthemonitorsystemsworkednormaIIy.KeywordsmonitorsystemfaiIuretreeanaIysisFTAfaiIureIocatingmaintain40TheapplicationbasedonanimprovedBPAlgorithmtothefaultdiagnosisofdieselengineWANGYue-minOIANWei-jianCoIIegeofPowerEng.NavaIUniv.ofEngineeringWuhan430033ChinaAbstractAppIicationofneuraInetworkstodiagnosethefauItofdieseIenginesbyusingimprovedBPAIgorithmisstudied.FirsttheimprovedBPAIgorithmisdiscussedthenthediagnosisparametersandthekindsofdiagnosisusedbydiagnosingdieseIenginefauItaregiven.Inadditionthebestfitcurveeguationsoffeatureparametersarepresented.AtIast6-l35ZCdieseIengineisexampIedforthisandtheneuraInetworksisverifiedbyusingthefauItdataofdieseIengine.ExperimentaIresuItdemonstratesthattheresuItofdiagnosistodieseIenginefauItisofgreataccuracytheappIicationofneuraInetworkstothisfieIdisusefuIandreIiabIe.KeywordsdieseIengineneuraInetworksfauItdiagnosisBPAIgorithm84No.42000JOURNALOFNAVALUNIVERSITYOFENGINEERINGSumNo.93改进的BP算法在柴油机故障诊断中的应用研究作者:王悦民,潜伟建,WANGYue-min,QIANWei-jian作者单位:海军工程大学动力工程学院,湖北,武汉,430033刊名:海军工程大学学报英文刊名:JOURNALOFNAVALUNIVERSITYOFENGINEERING年,卷(期):2000(4)被引用次数:10次参考文献(6条)1.张立明人工神经网络的模型及其应用19932.张运模;杜文瑞最优化方法19843.VenkatasubramanianV;VaidyanathanR;YamamotoYProcessfaultdetectionanddiagnosisusingneuralnetworks--I.Steady-stateprocess[外文期刊]1990(07)4.王悦民神经网络在柴油机故障诊断中的应用研究[学位论文]19975.施鸿宝神经网络及其应用19936.HoskinsJC;KaliyurKM;HimmelblauDMFaultdiagnosisincomplexchemicalplantsusingartificialneuralnetworks[外文期刊]1991(01)引证文献(10条)1.张文胜.龚涛.胡锴基于D-S证据理论的直流电机故障诊断研究[期刊论文]-中国舰船研究2010(4)2.马志.甄彤.张秋闻基于BP神经网络和D-S证据理论的粮情评价研究[期刊论文]-粮食加工2009(4)3.吴晓平.叶清.刘玲艳基于改进的BP网络的D-S证据理论及其应用[期刊论文]-武汉理工大学学报2007(8)4.嵇斗.王向军基于D-S证据理论和BP算法的直流电机故障诊断研究[期刊论文]-船电技术2007(4)5.叶清.吴晓平.刘玲艳基于BP神经网络的D-S证据理论及其应用[期刊论文]-海军工程大学学报2007(2)6.朱建元基于BP神经网络与时间序列分析的柴油机故障诊断[期刊论文]-上海海事大学学报2006(4)7.叶清.吴晓平.宋业新基于D-S证据理论和AHP的故障诊断方法研究[期刊论文]-海军工程大学学报2006(4)8.吴兴伟多传感器的信息融合在车载故障诊断中的应用研究[学位论文]硕士20069.周强基于模
本文标题:改进的BP算法在柴油机故障诊断中的应用研究
链接地址:https://www.777doc.com/doc-709158 .html