您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019年上海市九年级数学上期末试题附答案
2019年上海市九年级数学上期末试题附答案一、选择题1.下列图形中,可以看作是中心对称图形的是()A.B.C.D.2.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若50C,则∠AOD的度数为()A.40B.50C.80D.1003.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是()A.2B.1C.0D.﹣14.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()A.16(1+2x)=25B.25(1-2x)=16C.25(1-x)²=16D.16(1+x)²=255.下列命题错误..的是()A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等6.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°7.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.(1)2xx=20708.下列判断中正确的是()A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦9.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x1.11.21.31.41.51.6y﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.610.如图,AOB中,30B.将AOB绕点O顺时针旋转52得到AOB△,边AB与边OB交于点C(A不在OB上),则ACO∠的度数为()A.22B.52C.60D.8211.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为()A.10B.8C.5D.3二、填空题13.一元二次方程2420xx的两根为1x,2x,则2111242xxxx的值为____________.14.心理学家发现:学生对概念的接受能力y与提出概念的时间x(分)之间的关系式为y=﹣0.1x2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________分钟.15.某地区2017年投入教育经费2500万元,2019年计划投入教育经费3025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.16.一元二次方程250xxc有两个不相等的实数根且两根之积为正数,若c是整数,则c=_____.(只需填一个).17.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.18.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.19.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.20.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°三、解答题21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.22.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?23.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.24.解方程:2(x-3)2=x2-9.25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.(1)求证:无论m取何值,原方程总有两个实数根;(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.C解析:C【解析】【分析】由AC是⊙O的切线可得∠CAB=90,又由50C,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【详解】解:∵AC是⊙O的切线∴∠CAB=90,又∵50C∴∠ABC=90-50=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【点睛】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.3.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A.【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.4.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.5.A解析:A【解析】选项A,经过不在同一直线上的三个点可以作圆;选项B,经过切点且垂直于切线的直线必经过圆心,正确;选项C,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.8.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B.由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C.由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.9.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选C.【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.10.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得ACO的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.11.D解析:D【解析】【分析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.12.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题13.2【解析】【分析】根据一元二次方程根的意义可得+2=0根据一元二次方程根与系数的关系可得=2把相关数值代入所求的代数式即可得【详解】由题意得:+2=0=2∴=-2=4∴=-2+4=2故答案为:2【点解析:2【解析】【分析】根据一元二次方程根的意义可得2114xx+2=0,根据一元二次方程根与系数的关系可得12xx=2,把相关数值代入所求的代数式即可得.【详解】由题意得:2114xx+2=0,12xx=2,∴2114xx=-2,122xx=4,∴2111242xxxx=-2+4=2,故答案为:2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.14.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1解析:13【解析】【分析】直接代入求值即可.【详解】试题解析:把y=59.9代入y=﹣0.1x2+2.6x+43得,59.9=-0.1x2+2.6x+43解得:x1=x2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.15.10【解析】【分析】设年平均增长率为x则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元建立方程2500(1+x)2=3025求解即可【详解】解:设年平均增长解析:10%【解析】【分析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年
本文标题:2019年上海市九年级数学上期末试题附答案
链接地址:https://www.777doc.com/doc-7095468 .html