您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学数学应用题分类解题大全
1小学数学应用题分类解题大全求平均数应用题是在“把一个数平均分成几份,求一份是多少”的简单应用题的基础上发展而成的。它的特征是已知几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等。最后所求的相等数,就叫做这几个数的平均数。解答这类问题的关键,在于确定“总数量”和与总数量相对应的“总份数”。计算方法:总数量÷总份数=平均数平均数×总份数=总数量总数量÷平均数=总份数例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本?要求全班平均每人修补图书多少本,需要知道全班修补图书的总本数和全班的总人数。(15×28+280)÷(28+22)=14本例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元?要求什锦糖每千克多少元,要先出这几种糖的总价和总重量最后求得平均数,即每千克什锦糖的价钱。(2.4×5+3.2×4+4.2×11)÷(5+4+11)=3.55元例3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米?已知水渠的总长度,平均每天挖多少米,就要先求出一共挖了多少天。1455÷(3+(1455-285×3)÷300)=291米例4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分?2解法一:先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。(90–2)×5–90×4=80分例5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元?要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。(2400÷2×1.5+2400)÷3=1400元例6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元?要求每千克混合酒售价多少元,要先求得两种酒的总价钱和两种酒的总千克数。因为当剩余1千克时正好获得成本,所以在总千克数中要减去1千克。(30×13+24×8)÷(13+8–1)=29.1元例7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元?先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。1.平均分,每人应得多少本(22+23+30)÷3=25本2.甲少得了多少本25–22=3本3.乙少得了多少本25–23=2本4.每本图书多少元13.5÷3=4.5元5.丙应还给乙多少元4.5×2=9元313.5÷[(22+23+30)÷3–22]×[(22+23+30)÷3–23]=9元例8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。在同样的路程中,由于是下坡的不同,去时的上坡,返回时变成了下坡;去时的下坡,回来时成了上坡,因此,所用的时间也不同。要求往返一次的平均速度,需要先求得往返的总路程和总时间。1、往返的总路程(260+370)×2=1260米2、往返的总时间(260+370)÷16+(260+370)÷24=65.625分3、往返平均速度1260÷65.625=19.2米(260+370)×2÷[(260+370)÷16+(260+370)÷24]=19.2米例9、草帽厂有两个草帽生产车间,上个月两个车间平均每人生产草帽185顶。已知第一车间有25人,平均每人生产203顶;第二车间平均每人生产草帽170顶,第二车间有多少人?解法一:可以用“移多补少获得平均数”的思路来思考。第一车间平均每人生产数比两个车间平均每人平均数多几顶?203–185=18顶;第一车间有25人,共比按两车间平均生产数计算多多少顶?18×25=450。将这450顶补给第二车间,使得第二车间平均每人生产数达到两个车间的总平均数。6.第一车间平均每人生产数比两个车间平均顶数多几顶?203–185=18顶7.第一车间共比按两车间平均数逆运算,多生产多少顶?18×25=450顶48.第二车间平均每人生产数比两个车间平均顶数少几顶?185–170=15顶9.第二车间有多少人、450÷15=30人(203–185)×25÷(185–170)=30人例10、一辆汽车从甲地开往乙地,去时每小时行45千米,返回时每小时行60千米。往返一次共用了3.5小时。求往返的平均速度。(得数保留一位小数)解法一:要求往返的平均速度,要先求得往返的距离和往返的时间。去时每小时行45千米,1千米要小时;返回时每小时行60千米,1千米要小时。往返1千米要(+)小时,进而求得甲乙两地的距离。1、甲乙两地的距离3.5÷(+)=90千米2、往返平均速度90×2÷3.5≈52.4千米3.5÷(+)×2÷3.5≈52.4千米解法二:把甲乙两地的距离看作“1”。往返距离为2个“1”,即1×2=2。去时每千米需小时,返回时需小时,最后求得往返的平均速度。1÷(+)≈51.4千米文档顶端在解答某一类应用题时,先求出一份是多少(归一),然后再用这个单一量和题中的有关条件求出问题,这类应用题叫做归一应用题。归一,指的是解题思路。5归一应用题的特点是先求出一份是多少。归一应用题有正归一应用题和反归一应用题。在求出一份是多少的基础上,再求出几份是多产,这类应用题叫做正归一应用题;在求出一份是多少的基础上,再求出有这样的几份,这类应用题叫做反归一应用题。根据“求一份是多少”的步骤的多少,归一应用题也可分为一次归一应用题,用一步就能求出“一份是多少”的归一应用题;两次归一应用题,用两步到处才能求出“一份是多少”的归一应用题。解答这类应用题的关键是求出一份的数量,它的计算方法:总数÷份数=一份的数例1、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨?先求1辆卡车一次能运货物多少吨,再求增加6辆后,能运货物多少吨。这是一道正归一应用题。192÷24×(24+6)=240吨例2、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?这是一道反归一应用题。例3、3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?这是一道两次正归一应用题。例4、一个机械厂和4台机床4.5小时可以生产零件720个。照这样计算,再增加4台同样的机床生产1600个零件,需要多少小时?这是两次反归一应用题。要先求一台机床一小时可以生产零件多少个,再求需要多少小时。1600÷[720÷4÷4.5×(4+4)]=5小时例5、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工?先求每人每天的工作量,再求现在要修路多少米,然后求要5天完工需要工人多少人,最后求要增加多少人。(126+54)÷(126÷7÷6×5)–7=5人6例6、用两台水泵抽水。先用小水泵抽6小时,后用大水泵抽8小时,共抽水624立方米。已知小水泵5小时的抽水量等于大水泵2小时的抽水量。求大小水泵每小时各抽水多少立方米?解法一:根据“小水泵5小时的抽水量等于大水泵2小时的抽水量”,可以求出大水泵1小时的抽水量相当于小水泵几小时的抽水量。把不同的工作效率转化成某一种水泵的工作效率。1、大水泵1小时的抽水量相当于小水泵几小时的抽水量?5÷2=2.5小时2、大水泵8小时的抽水量相当于小水泵几小时的抽水量2.5×8=20小时3、小水泵1小时能抽水多少立方米?642÷(6+20)=24立方米4、大水泵1小时能抽水多少立方米?24×2.5=60立方米解法二:1、小水泵1小时的抽水量相当于大水泵几小时的抽水量2÷5=0.4小时2、小水泵6小时的抽水量相当于大水泵几小时的抽水量0.4×6=2.4小时3、大水泵1小时能抽水多少立方米?624÷(8+2.4)=60立方米4、小水泵1小时能抽水多少立方米?760×0.4=24立方米例7、东方小学买了一批粉笔,原计划29个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够有校的班级用多少天?先求这批粉笔够一个班用多少天,剩下的粉笔够一个班用多少天,然后求够在校班用多少天。1、这批粉笔够一个班用多少天40×20=800天2、剩下的粉笔够一个班用多少天800–10×20=600天3、剩下几个班20–10=10个4、剩下的粉笔够10个班用多少天600÷10=60天(40×20–10×20)÷(20–10)=60天例8、甲乙两个工人加工一批零件,甲4.5小时可加工18个,乙1.6小时可加工8个,两个人同时工作了27小时,只完成任务的一半,这批零件有多少个?先分别求甲乙各加工一个零件所需的时间,再求出工作了27小时,甲乙两工人各加工了零件多少个,然后求出一半任务的零件个数,最后求出这批零件的个数。[27÷(4.5÷18)+27÷(1.6÷8)]×2=486个文档顶端在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题。这类应用题叫做归总应用题。归总,指的是解题思路。归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份。8例1、一个工程队修一条公路,原计划每天修450米。80天完成。现在要求提前20天完成,平均每天应修多少米?450×80÷(80–20)=600米例2、家具厂生产一批小农具,原计划每天生产120件,28天完成任务;实际每天多生产了20件,可以几天完成任务?要求可以提前几天,先要求出实际生产了多少天。要求实际生产了多少天,要先求这批小农具一共有多少件。28–120×28÷(120+20)=4天例3、装运一批粮食,原计划用每辆装24袋的汽车9辆,15次可以运完;现在改用每辆可装30袋的汽车6辆来运,几次可以运完?24×9×15÷30÷6=18次例4、修整一条水渠,原计划由8人修,每天工作7.5小时,6天完成任务,由于急需灌水,增加了2人,要求4天完成,每天要工作几小时?一个工人一小时的工作量,叫做一个“工时”。要求每天要工作几小时,先要求修整条水渠的工时总量。1、修整条水渠的总工时是多少?7.5×8×6=360工时2、参加修整条水渠的有多少人8+2=10人3、要求4天完成,每天要工作几小时4、360÷4÷10=9小时7.5×8×6÷4÷(8+2)=9小时例5、一项工程,预计30人15天可以完成任务。后来工作的天后,又增加3人。每人工作效率相同,这样可以提前几天完成任务?一个工人工作一天,叫做一个“工作日”。要求可以提前几天完成,先要求得这项工程的总工作量,即总工作日。91、这项工程的总工作量是多少?15×30=450工作日2、4天完成了多少个工作日?4×30=120工作日3、剩下多少个工作日?450–120=330工作日4、剩下的要工作多少天?330÷(30+3)=10天5、可以提前几天完成?15–(4+10)=1天15–[(15×30–4×30)÷(30+3)+4]=1天例6、一个农场计划28天完成收割任务,由于每天多收割7公顷,结果18天就完成了任务。实际每天收割多少公顷?要求实际每天收割多少公顷,要先求原计划每天收割多少公顷。要求原计划每天收割多少公顷,要先求18天多收割了多少公顷。18天多收割的就是原计划(28–18)天的收割任务。1、18天多收割了多少公顷7×18=126公顷2、原计划每天收割多少公顷126÷(28–18)=12.6公顷3、实际每天收割多少公顷12.6+7=19.6公顷7×18÷(28–18)+7=19.6公顷例7、休养准备了120人30天的粮食。5天后又新来
本文标题:小学数学应用题分类解题大全
链接地址:https://www.777doc.com/doc-7108378 .html