您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 奥数-分式恒等变形学
分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。例1.若22004am,22003bm,22002cm且24abc,求111abcbccaababc的值。例2.若0abc,0abc,求222abcbcacab的值。例3.求证:2220()()()()()()abcbaccbaabacabbccbac例4.设正数x,y,z满足不等式2222xyzxy+2222yzxyz+2222zxyxz1,求证x,y,z是某个三角形的三边长例5.求分式248161124816111111aaaaaa,当2a时的值.例6.若1111abcabc,求证:7777771111abcabc.例7.化简:abbccaabbccaabbccaabbcca.例8.计算:2132xxx262xx2104xx.例9.化简2232233223222244113ababaababbaababbababab.例10.化简:222222222222abcbcacabacbabcbca例11.已知0abc,求证2222222221110bcaacbbac例12.已知0abc,求222222222abcabcbaccab的值例13.已知1,2xyzxyz,22216xyz,求代数式111222xyzyzxzxy的值。方法二、约分:分子、分母先因式分解再约分例14.已知分式2221(1)()xxyxy(1)在什么条件下此分式有意义?(2)在什么条件下分式的值为正、为负?(3)分式的值能否为0?例15.化简:42236421121111aaaaaaaaa例16.化简:4224232164242416844mmmmmmmmmm例17.化简:2222222211222abaabbabababab例18.化简:222111111()()()111111()()()abcbccaababcbccaab.方法三、倒数法例19.若13xx,则33441713xxxx=___________.例20.⑴已知15aa,则4221aaa=_________.⑵若2410xx,则42321912192xxxxx=_________.⑶若271xxx,则2421xxx=__________.例21.若2310xx,则74843231xxxxx________.例22.设211xxmx,则36331xxmx的值是()A.1B.213mC.2132mD.2131m例23.己知311yx,求yxyxyxyx2232的值。例24.设43223440(0,0)aabababbab,求baab的值.例25.已知xyaxy,yzbyz,zxczx,且0abc,求x的值。例26.已知()1xfxx,求下列的值111()()()(1)(0)(1)(2)(2011)(2012)201220112fffffffff方法四、等比定理、设k法例27.已知:2341341231241234aaaaaaaaaaaakaaaa,求k;例28.如果234xyz,求222xyyzzxxyz的值。例29.若abcdbcda,则abcdabcd的值是_______或________.例30.若0abc,且abbccacab,求()()()abbccaabc的值。例31.若xyzxyzxyzzyx,且0xyz,求()()()xyyzzxxyz的值;例32.已知222pqrxyzyzxzxy,求证()()pxqyrzxyzpqr。例33.已知xyzxyzxyzzyx,且()()()1xyyzzxxyz,求xyz.例34.已知0ay,且22222222bbxxbbxxaayyaayy,求证xbay或xbya。例35.已知yzxzxyxyzpxyzyzxzxy,求23ppp的值。方法五、巧变“1”例36.若1abc,求证:1111abcaabbbccca.例37.已知1111abcaabbbccca,求证:1abc.例38.若1abc,解关于x的方程2012111xxxaabbbccca.例39.已知1axbycz,求444444111111111111abcxyz的值。例40.设a、b、c均为正数,且a+b+c=1,求证1119abc。方法六、换元法例41.化简分式:222222113111112123xxxxxxxxxxxxxx例42.计算22223322332223()2nmnmmnmnnmnmnmmnmnmn例43.化简)()(2)(2)yxzxxyzxyz(+()()(2)(2)zyxyxyzyzx+()()(2)(2)xzyzyzxxyz例44.设a,b,c是实数,且222222()()()(2)(2)(2)bccaabbcacababc,求分式222(1)(1)(1)(1)(1)(1)bcacababc的值;例45.关于x的方程22xcxc的两根是122,xcxc,求关于x的方程2211xaxa的两个根?例46.若0xyz,1110123xyz,求222(1)(2)(3)xyz的值。例47.已知1,0xyzabcabcxyz,求证:2222221xyzabc.例48.设x、y、z都是正数,求证2229xyyzzxxyz。方法七、巧解方程组:消元思想;整体相加(减);整体相乘;两两相加(减);倒数法例49.已知三个不全为零的数x、y、z满足4360xyz,270xyz。求22222223657xyzxyz的值。例50.已知11ab,11bc,求2ca的值。例51.已知111xyzyzx,其中x,y,z互不相等,求证:2221xyz.例52.已知111xyztyzx,其中x,y,z互不相等,求t的值。例53.已知14xy,11yz,173zx,求xyz的值。例54.解方程组:222222414414414xyxyzyzxz例55.解方程组:111211131114xyzyzxzxy例56.已知0abcbccaab,求证:2220()()()abcbccaab例57.已知220ab,且22abcabcabMbcca,求证:()()()abcabbcca,且2abcMcab.方法八、降次思想例58.已知210xx,求2521xxx的值。例59.已知2519970xx,求42(2)(1)1(1)(2)xxxx的值。例60.已知210xx,求42322329321122xaxxax的值。方法九、裂项:因式分解再裂相例61.计算:2018119171531421311例62.化简111...123234(1)(2)nnn例63.1111(1)(2)(2)(3)(3)(4)(100)(101)xxxxxxxx例64.化简:dcbacbadcbabacbaab例65.求证:111()()(2)[(1)]()()naadadadandandaand例66.化简22()()()()()()bccaababacbcbacacbbaca例67.化简分式:2221113256712xxxxxx例68.化简:222222bccaabaabacbcbabbcaccbcacababbcca.例69.化简:222222abcbcacabaabacbcbabbcaccacbcab.例70.化简:222abcbaccababacbcbacacb.例71.若212axbxy,且0ab,求111...1120072007xyxyxy的值.例72.设正整数m、n满足mn,且2221111(1)23mmmmnn,则mn的值是多少?方法十、化为真分式:部分分式化,求最值或整数解例73.将269x化为部分分式.例74.将下列分式写成部分分式的和的形式:3222236113xxxxx.例75.将下列分式写成部分分式的和的形式:32241338121xxxxxx.例76.若0xyz,0xy,0yz,0zx,xayz,ybxz,zcxy。求证:1111abcabc。例77.已知x为整数,且223218339xxxx为整数,则所有符合条件的x的值的和为多少?例78.求最大正整数n,使得3100n能被10n整除。例79.求方程301xyx的整数解。例80.求方程22320060xxyxy的正整数解。例81.当x为何值时,分式22365112xxxx有最小值?最小值是多少?例82.当x为何值时,分式226121022xxxx可取最小值,最小值是多少?例83.已知2x,2222(1)xxxx是否有最值,最值时多少?十一、杂题例84.已知1ax,111nnaa(1,2,3,...n)(1)求2a,3a,4a,5a;(2)求2000a例85.已知6abxab,求3333xaxbxaxb的值.例86.已知3acbd,求证:222222()()acbdabcdacbdabcd例87.计算222222129911005000220050009999005000。例88.若a,b,c,d是正实数,且44444abcdabcd,求证:abcd;
本文标题:奥数-分式恒等变形学
链接地址:https://www.777doc.com/doc-7111485 .html