您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 奥数-分式恒等变形师
分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。例1.若22004am,22003bm,22002cm且24abc,求111abcbccaababc的值。(1/8)例2.若0abc,0abc,求222abcbcacab的值。(3)例3.求证:2220()()()()()()abcbaccbaabacabbccbac例4.设正数x,y,z满足不等式2222xyzxy+2222yzxyz+2222zxyxz1,求证x,y,z是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz0因式分解得(x+y-z)(y+z-x)(z+x-y)0所以三个括号内的数全正或者1正2负,因为x,y,z全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x,y,z是某个三角形的三边长例5.求分式248161124816111111aaaaaa,当2a时的值.【解析】先化简再求值.直接通分较复杂,注意到平方差公式:22ababab,可将分式分步通分,每一步只通分左边两项.原式248161124816111111aaaaaaaa22481622481611111aaaaa224816222121481611111aaaaaaa44816448161111aaaa1616161611aa32323232112a例6.若实数a,b,c满足1111abcabc,求证:7777771111abcabc.【证明】:由已知得到()()bcacababcabc,有()()()0abbcac,则a,b,c中一定有两个数互为相反数。例7.化简:abbccaabbccaabbccaabbcca.【解析】原式abbccaabbccaabbccaabbcca22bacbaccaabbcabbcca22bacbacabbcabbc0例8.计算:2132xxx262xx2104xx.【解析】设2132xxx1Ax+2212ABxABBxxx.121ABAB解之得23AB∴21233212xxxxx.同理:262xx22x21x,2104xx32x22x.∴原式21x+32x22x+21x32x+202x.用因式分解再通分法比较好补充:化简分式:22252571061268xxxxxxxxx例9.化简2232233223222244113ababaababbaababbababab.【解析】按照分式混合运算法则进行化简:2232233223222244113ababaababbaababbababab22222211abababababababab22223abababab222222223aabbababababababab22222222223aababbabababababab0.例10.化简:222222222222abcbcacabacbabcbca【解析】原式abcabcbcaabcabcbcaabcabcabcabcabcbcaabcbcaabcabcabcabc1例11.已知0abc,求证2222222221110bcaacbbac例12.已知0abc,求222222222abcabcbaccab的值【解答】:由2222222()()()aaaabcabababac;可得2222222()()()aaaabcabababac;答案为1;例13.已知1,2xyzxyz,22216xyz,求代数式111222xyzyzxzxy的值。(413)方法二、约分:分子、分母先因式分解再约分例14.已知分式2221(1)()xxyxy(1)在什么条件下此分式有意义?(2)在什么条件下分式的值为正、为负?(此问要解一元二次不等式,超纲)(3)分式的值能否为0?【分析与解答】:(1)x,y的绝对值都不是1(2)原式=(1+x)(1-x)/(x+1)(x-1)(y+1)(y-1)=1/(1-y^2)所以当y的绝对值小于1且x的绝对值不等于1时,分式为正当y的绝对值大于1且x的绝对值不等于1时,分式为负。(3)不能例15.化简:42236421121111aaaaaaaaa【解析】原式223324212111121aaaaaaaaa3342621111111aaaaaaaa224222422111111aaaaaaaa2例16.化简:4224232164242416844mmmmmmmmmm【解析】原式22222222422224241444244mmmmmmmmmmmmmm22222224222242414224242mmmmmmmmmmmmmmm1例17.化简:2222222211222abaabbabababab【解析】原式22222222222ababababababab222222222abababababab22222222ababababab22ab补充:化简4224223366422412baaabbaabbababaabb.【解析】按照分式混合运算法则进行化简:4224223366422412baaabbaabbababaabb22422442242222222212abaabbaabbabaabbabaabbabab42222222222221112aabbabaabbaabbabab2222222abaabbaabb42222222212aabbababab2222212abab补充:化简:2333232221112212211xxxxxxxxxx【解析】原式22222211112111111xxxxxxxxxxxxxx22112(1)111xxxxxx2222(1)2(1)01xxx例18.化简:222111111()()()111111()()()abcbccaababcbccaab.(a+b+c)方法三、倒数法例19.若13xx,则33441713xxxx=___________.【解析】解析:由221137xxxx,故2323242421111772511502131xxxxxxxxxx.例20.⑴已知15aa,则4221aaa=_________.⑵若2410xx,则42321912192xxxxx=_________.⑶若271xxx,则2421xxx=__________.【解析】⑴本小题是一个简单题,也是这类题的一个最基本、最原始的模型!2211523aaaa,4222211124aaaaa.⑵本题在例题的基础上,对已知条件稍作变形,待求式也稍作变形.214104xxxx224223211171919133311219211219219xxxxxxxxxxxxx⑶本题在上个例题的已知条件上稍作变形,实质是一样的!22211813477117491xxxxxxxxx.242221114913415115114949xxxxx.点评:倒数法是指利用已知条件中隐含的倒数关系,或者对已知条件、待求式作倒数变形,以便快速、准确地求解问题的一种方法,对于本题而言,已知条件中存在(或隐含)倒数关系,这类题目比较简单.补充:⑴已知2310mm,求分式2421mmm的值.⑵如果2310aa,那么361aa的值是_________.【解析】⑴221310133mmmmmm(∵0m)224222111118111mmmmmmm.⑵由2221131037aaaaaa,故3632321111111181aaaaaaaa.例21.若2310xx,则74843231xxxxx________.【解析】由2221131037xxxxxx,故原式23232424211113232501150131xxxxxxxxxx.例22.设211xxmx,则36331xxmx的值是()A.1B.213mC.2132mD.2131m【解析】由211xxmx可知,22221111121xmxxmxmmxxx.原式33311xmx2321111xxmxx231122mmmm2132m.例23.己知311yx,求yxyxyxyx2232的值。补充:已知114ab,求2227aabbabab的值例24.设43223440(0,0)aabababbab,求baab的值.【解】:两边同除以22ab,因式分解得到(3)(2)0ababbaba;答案为2或-3;例25.已知xyaxy,yzbyz,zxczx,且0abc,求x的值。例26.已知()1xfxx,求下列的值111()()()(1)(0)(1)(2)(2011)(2012)201220112fffffffff方法四、等比定理、设k法例27.已知:2
本文标题:奥数-分式恒等变形师
链接地址:https://www.777doc.com/doc-7111486 .html