您好,欢迎访问三七文档
整式的加减培优讲义一、代数式的概念1、用字母表示数之后,可能用字母表示的有(1)具有一定数量的数;(2)一些变化的规律;(3)数的运算法则和运算定律;(4)数量关系;(5)数学公式。2、用字母表示数的意义用字母表示数是代数的一个重要特点,它的优点在于能简明、扼要、准确地把数和数之间的关系表示出来,化特殊为一般,深刻地揭示数量之间的联系,为我们学习数学和应用数学带来方便。3、用字母表示数学公式(1)加法、乘法的运算律;(2)平面图形的面积公式;(3)平面图形的周长公式;(4)立体图形的体积公式。4、代数式的概念用字母表示数之后,出现了一些用运算符号把数和表示数的字母连接起来的式子,我们把它们叫做代数式。概念剖析:①运算符号指的是加、减、乘、除、乘方、绝对值,大中小括号以及以后要学到的开方符号,但不包括大于、小于号、等号等表示数量关系的关系符号;②单个的数字和字母也是代数式。③判断一个式子是否是代数式,只要看看它能否满足代数式的概念即可。例1、下列的式子中那些是代数式①②③④⑤⑥⑦⑧57是代数式的有_________________(只填序号);例2、下列各式中不是代数式的是()A、πB、0C、D、a+b=b+a5、书写代数式的规定21yxna10053xnmp1115822xxmyxx3573222272myxyx1(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号。(2)代数式中出现除法运算时,一般要写成分数的形式。(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来。例3、下列个代数式中①②③人④2·5⑤书写规范的有_________________________(只填序号);6、代数式的意义代数式的意义是把代数式的数量关系翻译成用文字叙述的数量关系,即为读代数式用语言把一个代数式的数学意义表示出来时,要正确表达式中所含有代数运算以及它们运算顺序,还要注意语言的简练准确。例4、说出下列代数式的意义①的意义是_______________________________________;②的意义是_______________________________________;③的意义是_______________________________________;7、单项式由数与字母的积组成的代数式叫做单项式,其中数因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数。单独的一个数或字母也叫做单项式。概念剖析:①单项式是代数式中的一种特殊形式;②要判断一个式子是否是单项式,只要看看它是否满足单项式的定义;③单独的一个数作为单项式时,其系数就是它本身,次数为0;单独的一个字母作为单项式时,其系数就是1,次数为它本身的次数;④若一个单项式的次数为,我们就叫该单项式次单项式;⑤单项式与单项式相等的条件:几个单项式完全相同。a214cba3nba25.2nm2)(2nmtnmmm例5、下列代数式中,①②1③④⑤⑥⑦⑧是单项式的有(只填序号);例6、代数式,,,中,单项式的个数是()A、4个B、3个C、2个D、1个例7、单项式是关于、的4次单项式,其系数是6,求和的值;例8、若单项式与单项式相等,则,;8、多项式几个多项式的和叫做多项式,其中、每个单项式都叫做多项式的项,不含字母的项叫做常数项,次数最高项的次数叫做该多项式的次数,每个单项式的系数都是多项式的系数;如果一个多项式有项,且次数为,则我们称该多项式为次项式。概念剖析:①多项式是代数式中的一种特殊形式;②在多项式里,所有字母的指数都是非负数。③多项式与多项式相等的条件:几个多项式的对应项完全相同。例9、多项式①是由哪些项组成,系数是,次数;②是由哪些项组成,系数是,次数;例10、若是关于、的四次四项式,则ab32xa1833xbaba25a1782009xabc5172xx5251211221nymxnxymn453yx4ymxnmnnmmnzyx253221rab13)2(235xyxyxyxmxy;例11、①若是关于、的四次三项式,则;②若是关于、的多项式,且不含一次项则;例12、当取何值时,多项式可化简为关于的一次单项式;例13、若多项式与多项式相等,则,;9、整式单项式和多项式统称整式二、代数式的计算1、同类项所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项。概念剖析:判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的指数也分别相同。即:“两相同,一关系;”两相同:所含字母相同、相同字母的指数也分别相同;一关系:字母与字母之间是乘积关系。例14、指出多项式里的同类项它们分别是;例15、若与是同类项,则_______,________;例16、当______时,与是同类项;2、合并同类项把多项式中的同类项合并成一项叫做合并同类项,不是同类项不能合并。合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母和字母的指数不变。例17、把多项式合并同类项后得m1)2(223xnyxyxnxyn1)2(223xnyxyxnxynx5532yxynxyyxm3727324xyynxmnxyyxyxxyyx213282344334427yxmnyx33mnn523yx1322nyxxxxx321769132___________________;例18、当时,求多项式的值;例19、已知与同类项,求多项式的的值;例20、若单项式与的和仍是单项式,则;3、去括号去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项符号都不改变;(2)括号前是“–”号,把括号和它前面的“–”号去掉后,原括号里各项的符号都要改变。例21、将下列各式的括号去掉①②③④⑤例22、化简4、整式的加减整式的加减实质上就是合并同类项,如果有括号的就先去括号,然后合并同类项概念剖析:整式加减运算的步骤:(1)去括号;(2)判断同类项;(3)合并同类项;例23、①求单项式,,,的和;21a36625322aaaanmyx2yx23152746353222222nmnmnmmnnmmnnmnyx43322yxmnm34)1(3bcaba)1(3bcaba)72()7(3232yxxyyx)72()7(3232yxxyyx)1()3(bcababbaaa25yx25yx2222xyyx24②求单项式,,,的差;③求与的和;④求与的差;⑤已知,,,求;⑥已知,,,求多项式的值。5、代数式的值的计算用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫代数式的值。求代数式的值要注意的问题:(1)字母的数值必须确保代数式有意义;(2)在代入数值计算之前要把代数式化到最简;(3)字母的取值保证它本身表示的数量有意义;(4)字母的取值不同,代数式的值也不同。代数式的值的计算方法:①从已知出发去求未知(向前看);②从未知出发去找未知和已知关系(回头看);③从已知和未知同时出发待相遇去找未知和已知关系(来回赶);yx25yx2222xyyx245252aa4342aa5252aa4342aa32xA2332xxB2322xxCCBA3221xA342xxB452xCBCBBAA)](2[21例24、已知,,求的值;例25、;已知,求代数式的值;例26、当时,求代数式的值;例27、已知时,求代数式的值例28、若,,则;例29、已知,则;例30、已知:均为有理数,且、,则的最大值为。三、探索规律1、探索数量关系,运用符号表示规律,通过运算验证规律2、用代数式表示简单问题中的数量关系,运用合并同类项,去括号等法则验证所探索的规律。例31、观察下列算式:、、、、、、622xyx9232xyy22984yxyx23baba6322yxyx)(2yxyxyxyx012mm2008223mm1032zyx15234zyxzyx012aa200620072008aaadcba,,,4ba2dcbdacdbcadcba33193227338134243357293635题、……用你发现的规律写出的末位数字是,的末位数字是;例32、将一张长方形的纸对折,如下图所示,可得到1条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得到7条折痕,那么对折4次可以得到条折痕;如果对折次,可以得到条折痕。例33、民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有种不同方法;例34、观察下列顺序排列的等式:9×0十1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=4l猜想:第年n个等式应为。例35、如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)时,需要的火柴棍总数为根。例36、观察下列等式9—l=8,16—4=12,25—9=16,36—16=20,……这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来:。例37、给出下列算式:l2+1=1×2,22+2=2×3,32+3=3×4,……你能发现什么规律,用代数式子表示这个规律:。2187376561382008320093n第1次对折第2次对折第3次对折例38、一项工程,甲建筑队单独承包需要a天完成,乙建筑队单独承包需要b天完成,现两队联合承包,完成这项工程需要()天.A.B.C.D.例39、用黑白两种颜色的正六边形地面砖按如下所示的规律.拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第n个图案中有白色地面砖块.例40、—种商品每件进价为a元,按进价增加25%定出售价,后因库存积压降价,按售价的九折出售,每件还能盈利().A.0.125aB.0.15aC.0.25aD.1.25a练习题:一、选择题:1、下列各式中不是代数式的是()A、πB、0C、D、a+b=b+a2、用代数式表示比y的2倍少1的数,正确的是()A、2(y–1)B、2y+1C、2y–1D、1–2y3、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降价20%,现售价为n元,那么该电脑的原售价为()A、B、C、D、ba1ba11baabab1yx1元)54(mn元)45(mn元)5(nm元)5(mn4、当时,代数式的值是()A、B、C、D、5、已知公式,若m=5,n=3,则p的值是()A、8B、C、D、6、下列各式中,是同类项的是()A、B、C、D、二、填空题:7、某商品利润是a元,利润率是20%,此商品进价是______________。8、代数式的意义是______________________________。9、当m=2,n=–5时,的值是__________________。10、化简__________________________________。三、解答题:11、已知当时,代数式的值是3,求代数式的值。61,31ba2)(ba1216141361nmp111811588152233xyyx与yxxy23与xx222与yzxy55与
本文标题:整式的加减培优讲义
链接地址:https://www.777doc.com/doc-7122370 .html