您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 相似三角形的判定分类习题
1相似三角形的判定知能点1角角识别法1.如图1,(1)若∠C=_____,则△OAC∽△OBD,∠A=________.(2)若∠B=________,则△OAC∽△OBD。(3)请你再写一个条件,_________,使△OAC∽△OBD.2.如图2,若∠BEF=∠CDF,则△_______∽△________,△______∽△_______.(1)(2)(3)3.如图3,已知A(3,0),B(0,6),且∠ACO=∠BAO,则点C的坐标为________,AC=_______.4.下列各组图形一定相似的是().A.有一个角相等的等腰三角形B.有一个角相等的直角三角形C.有一个角是100°的等腰三角形D.有一个角是对顶角的两个三角形6.如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.7.已知:如图是一束光线射入室内的平面图,上檐边缘射入的光线照在距窗户2.5m处,已知窗户AB高为2m,B点距地面高为1.2m,求下檐光线的落地点N与窗户的距离NC.8.如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.9.在ABCD中,M,N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD于F.(1)试说明△AMD∽△EMB;(2)求FNNE的值.10.在△ABC中,M是AB上一点,若过M的直线所截得的三角形与原三角形相似,试说明满足条件的直线有几条,画出相应的图形加以说明.11.高明为了测量一大楼的高度,在地面上放一平面镜,镜子与楼的距离AE=27m,他与镜子的距离是2.1m时,刚好能从镜子中看到楼顶B,已知他的眼睛到地面的高度CD为1.6m,结果他很快计算出大楼的高度AB,你知道是什么吗?试加以说明.12.(安徽)如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.213.(上海)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,与△ABC相似的三角形是().A.△DBEB.△ADEC.△ABDD.△BDC变式训练:如第13题图,已知等腰三角形ABC中,顶角∠A=36°,BD平分∠ABC,则ADAC的值为().14、已知,如图:CE是Rt△ABC的斜边上的高,在CE的延长线上任取一点P,连结AP自B,作BG⊥AP于G交CP于D,求证:2CEDEPE15、四边形ABCD、DEFG都是正方形连接AE,CG相交于点M,与AD交于点N,求证:ANDNCNMN16、如图所示,已知△ABC与△ADE的边BC、AD相交于O,且∠1=∠2=∠3,求证:(1)△ABO∽△CDO;(2)△ABC∽△ADE17、如图所示,E是正方形ABCD的边AB上的一点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF.(2)若AE:EB=1:2,求DE:EF的比值.18、如图,已知E是正方形ABCD的边CD上一点,BF⊥AE于F,求证:AB2=AE•BF.319、如图,AD是Rt△ABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、AC于点E、F,则AF:AD=BE:BD吗?说明理由20、如图:在Rt△ABC中,∠ABC=90°,BD⊥AC于D,若E是BC中点,ED的延长线交BA的延长线于F,求证AB:BC=DF:BF知能点2边角边识别法21、已知△ABC中,点D、E分别在AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE,若∠BDE+∠BCE=180°那么,△DCF∽△BEF?为什么?22、如图,在正方形ABCD中,P是BC上的一点,且BP=3PC,Q是CD的中点1)求证△ADQ∽△QCP2)求证AQ⊥PQ23、如图,已知D为△ABC内一点,E为△ABC外一点,且∠ABD=∠EBC,∠BAD=∠ECB.求证:△ABC∽△DBE.24、四边形ABCD的对角线相交于点O,∠BAC=∠CDB,求证:△AOD∽△BOC425、如图,点C,D都在线段AB上,△PCD是等边三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB(2)当△ACP∽△PDB时求∠APB的度数。26、已知,如图∠A=60°,BD,CE是△ABC的两条高,求证:△ADE∽△ABC变式:如果把∠A=60°去掉后结论还成立吗?27、如图,E是四边形ABCD的对角线BD上的一点,且AB:AE=AC:AD,∠BAE=∠CAD.求证:∠ABC=∠AED28、如图,在Rt△ABC中,△ACB=90,CD⊥AB于点D,分别以AC、BC为边向三角形外作等边三角形△ACE和等边△BCF,DE、DF,试说明△ADE∽△CDF29、如图,在矩形ABCD中,E为AD中点,EF⊥EC交AB于点F,连接FC(AB>AE)。⑴.△AEF与△EFC是否相似,给出证明⑵.设AB:BC=K,是否存在这样的K值,使得△AEF与△BFC相似,若存在,证明你的结论并求出K的值;若不存在,说明理由。30、如图,在直角坐标系中,已知点A(2,0),B(0,4),在坐标轴上找到点C(1,0)和点D,使△AOB与△DOC相似,求出D点的坐标,并说明理由.531、在直角坐标系中有两点A(4.0)、B(0,2),如果点C在轴x上(C与A不重合),当点C的坐标为多少时,使得由点B、O、C组成的三角形与△AOB相似32、如图,四边形ABCD、DCEF、EFGH都是正方形。(1)△ACF与△ACG相似吗?说明你的理由。(2)求∠1+∠2的度变式训练:如图,AB=BC=CD=DE,∠B=90°,则∠1+∠2+∠3等于().A.45°B.60°C.75°D.90°综合训练题33、如图,在正方形ABCD中,AB=2,P是BC边上与B.C不重合的任意一点,DQ垂直AP于点Q.(1)判断△DAQ与△APB是否相似,并说明理由(2)当点P在BC上移动时,线段DQ也随之变化,设AP=x,DQ=y,有y与x间的函数关系式,并求出x的取值范围34、如图正方形ABCD的边长为2,AE=EB,线段MN的两端点分别在CB、CD上滑动,且MN=1,当CM为何值时△AED与以M、N、C为顶点的三角形相似?35、如图,在△ABC中,∠C=90°,BC=8cm,5AC-3AB=0,点P从B出发,沿BC方向以2cm/s的速度移动,与此同时点Q从C出发,沿CA方向以1cm/s的速度移动,经过多长时间△ABC和△PQC相似?36、如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为l单位/秒,问两动点同时出发,移动多少时间时,△PQA与△ABC相似?637、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.38、已知:如图,△ABC中,AD是角平分线.求证:BDABDCAC变式训练:已知,△ABC中,AD是∠BAC的外角平分线,AD与BC的延长线交与点D,求证BD:CD=AB:AC39、如图,ABC的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BC延长线相交于F,求证:BFCFBDCEBDACFE40、如图,△ABC中,ABAC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:AB·DF=AC·EF。41、如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG2=CFBF【开放探索创新】42.(广东)如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E.(1)求证:△CDE∽△FAE.(2)当E是AD的中点且BC=2CD时,求证:∠F=∠BCF.
本文标题:相似三角形的判定分类习题
链接地址:https://www.777doc.com/doc-7137327 .html