您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2.3-第1课时-用公式法求解一元二次方程-公开课一等奖课件PPT
2.3用公式法求解一元二次方程第二章一元二次方程第1课时用公式法求解一元二次方程导入新课讲授新课当堂练习课堂小结学习目标1.理解一元二次方程求根公式的推导过程.2.会用公式法解一元二次方程.(重点)3.会用根的判别式b2-4ac判断一元二次方程根的情况及相关应用.(难点)问题:说一说用配方法解系数不为1的一元二次方程的步骤?基本步骤如下:①将二次项系数化为1.②将常数项移到方程的右边,是左边只有二次项和一次项.③两边都加上一次项系数一半的平方.④直接用开平方法求出它的解.导入新课做一做:你能用配方法解方程ax2+bx+c=0(a≠0)吗?一元二次方程求根公式的推导过程一解:二次项系数化为1,得x2+x+=0.配方,得x2+x+()2-()2-=0,移项,得(x+)2=abacabab2ab2acab2.2244aacb问题1:接下来能用直接开平方解吗?讲授新课问题2:什么情况下可以直接开平方?什么情况下不能直接开?(x+)2≥0,4a2>0.当b2-4ac<0时,不能开方(负数没有平方根).当b2–4ac≥0时,左右两边都是非负数.可以开方,得x+=x=ab2ab2.2244aacb.aacbb242这个公式叫做一元二次方程的求根公式,利用这个公式解一元二次方程的方法叫做公式法.对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,aacbbx242这个公式说明方程的根是由方程的系数a、b、c所确定的,利用这个公式,我们可以由一元二次方程中系数a、b、c的值,直接求得方程的解.归纳用公式法解一元二次方程二例1:解方程(1)x2-7x–18=0.解:这里a=1,b=-7,c=-18.∵b2-4ac=(-7)2-4×1×(-18)=1210,∴即x1=9x2=-2..2117121217x典例精析(2)4x2+1=4x解:将原方程化为一般形式,得4x2-4x+1=0.这里a=4,b=-4,c=1.∵b2-4ac=(-4)2-4×4×1=0,∴即x1=x2=.)(214204x.21例2解方程:4x2-3x+2=0224,3,2.4(3)442932230.abcbac因为在实数范围内负数不能开平方,所以方程无实数根.解:要点归纳公式法解方程的步骤1.变形:化已知方程为一般形式;2.确定系数:用a,b,c写出各项系数;3.计算:b2-4ac的值;4.判断:若b2-4ac≥0,则利用求根公式求出;若b2-4ac0,则方程没有实数根.问题:对于一元二次方程ax2+bx+c=0(a≠0),如何来判断根的情况?用判别式判断一元二次方程的根三对一元二次方程:ax2+bx+c=0(a≠0)•b2-4ac0时,方程有两个不相等的实数根.•b2-4ac=0时,方程有两个相等的实数根.•b2-4ac0时,方程无实数根.我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0),的根的判别式,用符号“Δ”来表示.不解方程判别下列方程的根的情况.(1)x2-6x+1=0;(2)2x2–x+2=0;(3)9x2+12x+4=0.解:(1)Δ=(-6)2–4×1×1=320,∴有两个不相等的实数根.(2)Δ=(-1)2–4×2×2=-150,∴无的实数根.(3)Δ=(12)2–4×9×4==0,∴有两个相等的实数根.练一练3、判别根的情况,得出结论.1、化为一般式,确定a,b,c的值.要点归纳根的判别式使用方法2、计算的值,确定的符号.例3若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k<5且k≠1C.k≤5且k≠1D.k>5【解析】由题意知方程(k-1)x2+4x+1=0有两个不相等的实数根,所以有,0,01k0144,012kk即∴k<5且k≠1故选B.B1.解方程:x2+7x–18=0.解:这里a=1,b=7,c=-18.∵b2-4ac=72–4×1×(-18)=1210,即x1=-9,x2=2.7121711.212x当堂练习2.解方程(x-2)(1-3x)=6.解:去括号,得x–2-3x2+6x=6,化简为一般式3x2-7x+8=0,这里a=3,b=-7,c=8.∵b2-4ac=(-7)2–4×3×8=49–96=-470,∴原方程没有实数根.3.解方程:2x2-x+3=0解:这里a=2,b=-,c=3.∵b2-4ac=27-4×2×3=30,∴即x1=x2=33.4333x333.234.不解方程,判别方程5y2+1=8y的根的情况.解:化为一般形式为:5y2-8y+1=0.所以Δ=b2-4ac=(5)2-4×(-8)×1=570.所以方程5y2+1=8y的有两个不相等的实数根.这里a=5,b=-8,c=1,能力提升:在等腰△ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,所以Δ=b2-4ac=(b-2)2-4(6-b)=b2+8b-20=0.所以b=-10或b=2.将b=-10代入原方程得x2-8x+16=0,x1=x2=4;将b=2代入原方程得x2+4x+4=0,x1=x2=-2(不符题设,舍去);所以△ABC的三边长为4,4,5,其周长为4+4+5=13.课堂小结公式法求根公式步骤一化(一般形式);二定(系数值);三求(Δ值);四判(方程根的情况);五代(求根公式计算).242bbacxa根的判别式b2-4ac务必将方程化为一般形式讧讨让讪讫讬训议诃评诅诛诰诱诲诳说诵诶请诸诹诺䩺䩻䩼䩽䩾䩿䪀䪁䪂䪃䪄䪅䪆䪇䪉䪞䪰䪮䪭䪬䪫䪩䪨䪧䪤䪺䪻䪼䪾䫀䫁䫂䫃䫅䫆䫇䫉䫊䫋䪶䪋䪊䩍䩋䩁䩄䩃䩘䩗䩬䩖䩕䩪䩩䩔䩓䩨䩧䩒䩑䩦䩥䩐䩥䩦䩧䩨䩩䩪䩬䩭䩰䩱䩲䩳䩵䩶䩷䩹䪎䪍䪌䪋䪊䪇䪅䪃䪁䪀䩿䩽䩻䩺䪷䪡䪟䪳䪲䪱䪰䪯䪮䪭䪭䪭䪭䨑䨒䨓䨔䨗䨘䨙䨛䨜䨝䨞䨟䨠䨵䩉䩈䩇䩆䩅䩄䩃䩂䩁䨬䨭䨮䨯䨰䨲䨴䨶䨷䨸䨹䨺䩤䩣䩢䩠䩡䩟䩝䩙䩔䩒䩑䩐䦽䦾䦿䧂䧃䧄䧅䧆䧈䧉䧊䧋䧌䧍䧎䧏䧐䧑䧦䧥䧣䧢䧡䧠䧟䧞䧝䧜䧚䧙䧘䧗䧖䧕䧔䧓䧒䧧䧨䧪䧫䧬䧭䧮䧯䧰䧱䧳䧵䧶䧹䧻䨐䨏䨎䨋䨊䨉䨈䨇䨅䨄䨃䨂䨁䨀䧿䧾䧽䧼䤿䥀䥁䥂䥃䥄䥅䥆䥇䥈䥉䥊䥋䥌䥍䥎䥏䥐䥑䥒䤾䥓䥨䥧䥦䥤䥣䥢䥡䥠䥟䥞䥝䥜䥛䥚䥙䥘䥗䥖䥕䥔䥭䥬䥮䥯䥰䥱䥲䥳䥴䥵䥶䥷䥸䥹䥽䥼䦒䦑䦐䦏䦎䥹䥸䥶䦋䦌䦡䦠䦟䦊䦉䥲䥱䥰䥯䥭䥬䥫䥪䦀䦕䦗䦖䦘䦃䦂䦄䦙䦅䦚䥰䥱䦆䦛䦜䥲䦈䦝䦞䦉䥴䥵䦊䦟䦠䦋䦡䦡䦌䦍䦢ジスズセゼソゾチヂヂッツテデトナミボプフーヽㄅㄇㄈㄉㄋㄍㄒㄓㄔㄖ㈠ㄩㄨㄦㄥㄡㄠㄞㄝㄛㄚㄙㄘヽヾㄅㄆㄇㄈㄉㄋㄌㄎㄏㄏㄐㄑㄓㄔㄔㄖㄕ㐔㐓㐒㐑㐊㐈㐆㐃㐂㐂㐀㐽㐽㐼㐻㐹㐶㐵㐴㐴㐱㐰㐰㐯㐮㐬㐪㐖㐗㐘㐛㐟㐡㐢㐦㐨㑓㑐㑎㑌㑇孉孊娈孋孊孍孎孏嫫婿媚子部:孑孒孓孖孚玭昆吡纰妣锴鈚秕庇沘毛部:毜毝毞毟毠毡毢毣毤毥毦绒毨毩毪毫球毭毮毯毰毱毲毳毴毵毶毷毸毹毺毻毼毽毾毵氀氁牦氃氋氄氅氆氇毡氉毡氍氎氏部:氒氐抵坻坁胝阍痻泜汦茋芪柢砥奃睧视蚳蚔呧軧軝崏弤婚怟惛忯岻貾气部:氕氖気氘氙氚氜氝氞氟氠氡氢氤氥氦氧氨氩氪氭氮氯氰氱氲水氵部:氶氷凼氺氻氼氽泛氿汀汃汄汅氽汈汊汋汌泛汏汐汑汒汓汔汕汖汘污污汛汜汞汢汣汥汦汧汨汩汫汬汭汮汯汰汱汲汳汴汵汶汷汸汹汻汼汾汿沀沂沃沄沅沆沇沊沋沌冱沎沏洓沓沔沕沗沘沚沛沜沝沞沠沢沣沤沥沦沨沩沪沫沬沭沮沯沰沱沲沴沵沶沷沸沺沽泀泂泃泅泆泇泈泋泌泍泎泏泐泑泒泓泔泖泗泘泙泚泜溯泞泟泠泤泦泧泩泫泬泭泮泯泱泲泴泵泶泷泸泹泺泾泿洀洂洃洄洅洆洇洈洉洊洌洍洎洏洐洑洒洓洔洕洖洘洙洚洜洝洠洡洢洣洤洦洧洨洫洬洭洮洯洰洱洳洴洵洷洸洹洺洼洽洿浀浂浃浄浈浉浊浌浍浏浐浒浔浕浖浗浘浚浛浜浝浞浟浠浡浢浣浤浥浦浧浨浫浭浯浰浱浲浳浵浶浃浺浻浼浽浾浿涀涁涂涃涄涅涆泾涊涋涍涎涐涑涒涓涔莅涗涘涙涚涜涝涞涟涠涡涢涣涥涧涪涫涬涭涰涱涳涴涶涷涸涹涺涻凉涽涾涿淁淂淃淄淅淆淇淈淉淊淌淍淎淏淐淓淔淕淖淗淙淛淜淞淟淠淢淣淤渌淦淧沦淬淭淯淰淲淳淴涞滍淾淿渀渁渂渃渄渆渇済渋渌渍渎渏渑渒渓渕渖渘渚渜渝渞渟沨渥渧渨渪渫渮渰渱渲渳渵渶渷渹渻渼渽渿湀湁湂湄湅湆湇湈湉湋湌湍湎湏湐湑湒湓湔湕湗湙湚湜湝浈湟湠湡湢湤湥湦湨湩湪湫湬湭湮湰湱湲湳湴湵湶湷湸湹湺湻湼湽満溁溂溄溆溇沩溉溊溋溌溍溎溏溑溒溓溔溕溗溘溙溚溛溞溟溠溡溣溤溥溦溧溨溩溬溭溯溰溱溲涢溴溵溶溷溸溹溻溽溾溿滀滁滂滃沧滆滇滈滉滊涤滍荥滏滐滒滓滖滗滘汇滛滜滝滞滟滠滢滣滦滧滪滫沪滭滮滰滱渗滳滵滶滹滺浐滼滽漀漃漄漅漈漉溇漋漌漍漎漐漑澙熹漗漘漙沤漛漜漝漞漟漡漤漥漦漧漨漪渍漭漮漯漰漱漳漴溆漶漷漹漺漻漼漽漾浆潀颍潂潃潄潅潆潇潈潉潊潋潌潍潎潏潐潒潓洁潕潖潗潘沩潚潜潝潞潟潠潡潢潣润潥潦潧潨潩潪潫潬潭浔溃潱潲潳潴潵潶滗潸潹潺潻潼潽潾涠涩澄澃澅浇涝澈澉澊澋澌澍澎澏湃澐澑澒澓澔澕澖涧澘澙澚澛澜澝澞澟渑澢澣泽澥滪澧澨澪澫澬澭浍澯澰淀澲澳澴澵澶澷澸澹澺澻澼澽澾澿濂濄濅濆濇濈濉濊濋濌濍濎濏濐濑濒濓沵濖濗泞濙濚蒙浕濝濞济濠濡濢濣涛濥濦濧濨濩濪滥浚濭濮濯潍滨濲濳濴濵阔濷濸濹溅濻泺濽滤濿瀀漾瀂瀃灋渎瀇瀈泻瀊沈瀌瀍瀎浏瀐瀒瀓瀔濒瀖瀗泸瀙瀚瀛瀜瀞潇潆瀡瀢瀣瀤瀥潴泷濑瀩瀪瀫瀬瀭瀮瀯弥瀱潋瀳瀴瀵瀶瀷瀸瀹瀺瀻瀼瀽澜瀿灀灁瀺灂沣滠灅灆灇灈灉灊灋灌灍灎灏灐洒灒灓漓灖灗滩灙灚灛灜灏灞灟灠灡灢湾滦灥灦滟灨灪火灬部:灮灱灲灳灴灷灸灹灺灻灼炀炁炂炃炄炅炆炇炈炋炌炍炏炐炑炓炔炕炖炗炘炙炚炛炜炝炞炟炠炡炢炣照炥炦炧炨炩炪炫炯炰炱炲炳炴炵炶炷炻炽炾炿烀烁烃烄烅烆烇烉烊烋烌烍烎烐烑烒烓烔烕烖烗烙烚烜烝烞烠烡烢烣烥烩烪烯烰烱烲烳烃烵烶烷烸烹烺烻烼烾烿焀焁焂焃焄焇焈焉焋焌焍焎焏焐焑焒焓焔焕焖焗焘焙焛焜焝焞焟焠焢焣焤焥焧焨焩焪焫焬焭焮焯焱焲焳焴焵焷焸焹焺焻烧焽焾焿煀煁煂煃煄煅辉煈炼煊煋煌煍煎煏煐煑炜煓煔暖煗煘煚煛煜煝煞煟煠煡茕煣焕煦煨煪煫炀煭煯煰煱煲煳煴煵煶煷煸煹煺煻煼煽煾煿熀熁熂熃熄熅熆熇熈熉熋熌熍熎熏熐熑荧熓熔熕熖炝熘熚熛熜熝熞熠熡熢熣熤熥熦熧熨熩熪熫熬熭熮熯熰颎熳熴熵熶熷熸熹熺熻熼熽炽熿燀烨燂燅燆燇炖燊燋燌燍燎燏磷燑燓燔燖燗燘燚燛燝燞燠燡燢燣燤燥灿燧燨燩燪燫燮燯燰燱燲燳烩燵燵燸燹燺薰燽焘耀爀爁爂爃爄爅爇爈爉爊爋爌烁爎爏爑爒爓爔爕爖烨爘爙爚烂爜爝爞爟爠爡爢爣爤爥爦爧爨爩孛孜孞孠孡孢孥孧孨孪孙孬孭孮孯孰孱孲孳孴孵孶孷孹孻孼孽孾宀部:宄宆宊宍宎宐宑宒宓宔宖実宥宧宨宩宬宭宯宱宲宷宸宺宻宼寀寁寃寈寉寊寋寍寎寏寔寕寖寗寘寙寚宁寝寠寡寣寥寪寭寮寯寰寱寲宝寴寷寸部:寽対尀専尃克尌小部:尐尒尕尗尛尜尞尟尠尢部:尣尢尥尦尨尩尪尫尬尭尮尯尰尴尳尴尵尶尸部:屃屇屐屒屃屔屖屗屘屙屚屛屉扉屟屡屣履屦屧屦屩屪屫山部:敳屮屰屲屳屴屵屶屷屸屹屺屻屼屽屾岃岄岅岆岇岈岉岊岋岌岍岎岏岐岑岒岓岔岕岖岘岙岚岜岝岞岟岠岗岢岣岤岥岦岧岨岪岫岬岮岯岰岲岴岵岶岷岹岺岻岼岽岾岿峀峁峂峃峄峅峆峇峈峉峊峋峌峍峎峏峐峑峒峓崓峖峗峘峚峙峛峜峝峞峟峠峢峣峤峥峦峧峨峩峪峬峫峭峮峯峱峲峳岘峵峷峸峹峺峼峾峿崀崁崂崃崄崅崆崇崈崉崊崋崌崃崎崏昆崒崓崔崕崖崘崚崛崜崝崞崟岽崡峥崣崤崥崦崧崨崩崪崫岽崮崯崰崱崲嵛崴崵崶崷崸崹崺崻崼崽崾崿嵀嵁嵂嵃嵄嵅嵆嵇嵈嵉嵊嵋嵌嵍嵎嵏岚嵑岩嵓嵔嵕嵖岁嵘嵙嵚嵛嵜嵝嵞嵟嵠嵡嵢嵣嵤嵥嵦嵧嵨嵩嵪嵫嵬嵭嵮嵯嵰嵱嵲嵳嵴嵵嵶嵷嵸嵹嵺嵻嵼嵽嵾嵿嶀嵝嶂嶃崭嶅嶆岖嶈嶉嶊嶋嶌嶍嶎嶏嶐嶑嶒嶓嵚嶕嶖嶘嶙嶚嶛嶜嶝嶞嶟峤嶡峣嶣嶤嶥嶦峄峃嶩嶪嶫嶬嶭崄嶯嶰嶱嶲嶳岙嶵嶶嶷嵘嶹岭嶻屿岳帋巀巁巂巃巄巅巆巇巈巉巊岿巌巍巎巏巐巑峦巓巅巕岩巗巘巙巚巛部:巛巜巠巡巢巣巤匘工部:巪巬巭巯己已巳部:巵巶巸卺巺巼巽巾部:巿帀帄帇帉帊帋帍帎帏帑帒帓帔帗帙帚帞帟帠帡帢帣帤帨帩帪帬帯帰帱帲帴帵帷帹帺帻帼帽帾帿幁幂帏幄幅幆幇幈幉幊幋幌幍幎幏幐幑幒幓幖幙幚幛幜幝幞帜幠幡幢幤幥幦幧幨幩幪幭幮幯幰襕干部:幷幺部:幺吆玄兹滋广部:庀庁仄広庅庇庈庉庋庌庍庎庑庖庘庛庝庠庡庢庣庤庥庨庩庪庬庮庯庰庱庲庳庴庵庹庺庻庼庽庿廀厕廃厩廅廆廇廋廌廍庼廏廐廑廒廔荫廖廗廘廙廛廜廞庑廤廥廦廧廨廭廮廯廰痈廲廴部:廵廸廹回乃廽廾部:廿弁弅弆弇弉弋部:弋弌弍
本文标题:2.3-第1课时-用公式法求解一元二次方程-公开课一等奖课件PPT
链接地址:https://www.777doc.com/doc-7140418 .html