您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 理论文章 > 新人教版九年级上册数学第二十三章-小结与复习
第二十三章旋转小结与复习要点梳理考点讲练课堂小结课后作业九年级数学上(RJ)教学课件一、旋转的特征1.旋转过程中,图形上______________________按旋转.2.任意一对对应点与旋转中心的连线所成的角都是________,对应点到旋转中心的距离都________.3.旋转前后对应线段、对应角分别____,图形的大小、形状_________.每一点都绕旋转中心同一旋转方向同样大小的角度旋转角相等相等不变要点梳理1.中心对称把一个图形绕着某一个点旋转____,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.180°二、中心对称2.中心对称的特征中心对称的特征:在成中心对称的两个图形中,对应点所连线段都经过,并且被对称中心________.3.中心对称图形把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.对称中心平分考点一旋转的概念及性质的应用例1(1)如图a,将三角形AOB绕点O按逆时针方向旋转60°后得到三角形COD,若∠AOB=15°,则∠AOD的度数是()A.15°B.60°C.45°D.75°ABODC图aC【解析】关键找出旋转角∠BOD=60°;考点讲练(2)如图b,4×4的正方形网格中,三角形MNP绕某点旋转一定的角度,得到三角形M1N1P1,其旋转中心是()A.点AB.点BC.点CD.点DN1M1NMP1DPAB图bCB【解析】作线段MM1与PP1的垂直平分线,交点便是旋转中心.1.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将三角形AOB绕点O逆时针旋转90°得到三角形COD,则旋转过程中形成的阴影部分的面积为________.9π4针对训练2.如图,在正方形网格中,三角形ABC的顶点都在格点(小正方形的顶点)上,将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB1C1.请你作出三角形AB1C1.解析:作∠CAC′=90°,且AC=AC′,得到C的对应点C′,由同样的方法得到其余各点的对应点.解:如图所示:(1)画旋转后的图形,要善于抓住图形特点,作出特殊点的对应点;(2)旋转作图时要明确三个方面:旋转中心、旋转角度及旋转方向(顺时针或逆时针).方法总结考点二旋转变换例2如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.解析:(1)根据题意,找准旋转中心,旋转方向及旋转角度,补全图形即可;(2)由旋转的性质得∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到△BDC与△EFC全等,利用全等三角形对应角相等即可得证.F解:(1)补全图形,如图所示;(2)由旋转的性质得,DC=FC,∠DCF=90°,∴∠DCE+∠ECF=90°.∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.针对训练3.如图,在等腰Rt△ABC中,点O是AB的中点,AC=4,将一块边长足够大的三角板的直角顶点放在O点处,将三角板绕点O旋转,始终保持三角板的直角边与AC相交,交点为D,另一条直角边与BC相交,交点为E,则等腰直角三角形ABC的边被三角板覆盖部分的两条线段CD与CE长度之和等于.ABCDEO4例3如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为格点.已知△AOB的顶点均在格点上,建立如图所示的平面直角坐标系,点A、B的坐标分别是A(3,2)、B(1,3).xyOAB(1)将△AOB绕点O逆时针旋转90°后得到△A1OB1,画出旋转后的图形;(2)画出△AOB关于原点O对称的图形△A2OB2,并写出点A2,B2的坐标.xyOABA1B1A2B2解析(1)因为旋转角90°,故用直角三角板及圆规可快速确定对应点的位置;(2)先根据关于原点对称的点的坐标确定对称顶点的坐标,再依次连结得到所要画的图形.易错提示作旋转图形不要搞错方向.解:(1)如图所示;(2)如图所示,点A2的坐标为(-3,-2),B2的坐标为(-1,-3).例4如图,有一张不规则纸片,若连接EB,则纸片被分为矩形FABE和菱形EBCD,请你用无刻度的直尺画一条直线把这张纸片分成面积相等的两部分,并说明理由.ABCFED解:矩形FABE是中心对称图形,矩形BCDE也是中心对称图形,所以经过它们中心的直线把图形分成全等的两部分,面积相等.如图直线l既经过矩形FABE的中心,又经过菱形BCDE的中心,所以它把纸片分成面积相等的两部分.l4.如图,从前一个农民有一块平行四边形的土地,地里有一个圆形池塘.财主立下遗嘱:要把这块土地平分给他的两个儿子,中间池塘也平分.财主的两个儿子不知怎么做,你能想个办法吗?解析先找到平行四边形对角线的交点A,过点A、B两点作一条直线可以了.AB针对训练考点三中心对称例5下列图形中,既是轴对称图形,又是中心对称图形的是().ABCDD【解析】图A.图B都是轴对称图形,图C是中心对称图形,图D既是中心对称图形也是轴对称图形.中心对称图形和轴对称图形的主要区别在于一个是绕一点旋转,另一个是沿一条直线对折.这是易错点,也是辨别它们不同的关键.方法总结5.下列说法不正确的是()A.任何一个具有对称中心的四边形都是平行四边形B.平行四边形既是轴对称图形,又是中心对称图形C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条.B针对训练例6:如图所示的图案是一个轴对称图形(不考虑颜色),直线m是它的一条对称轴.已知图中圆的半径为r,求你能借助轴对称的方法求出图中阴影部分的面积吗?说说你的做法.m考点四图形变换的简单应用解:以直线m为对称轴,把m左边绿色部分反射到m的右边,那么它们的像恰好填补了右边的白色部分,所以图中的绿色部分面积等于半个圆的面积,也就是.21π2rm旋转的概念旋转中心旋转方向旋转角度旋转的三要素基本性质①旋转前后的图形全等②对应点到旋转中心的距离相等旋转图形的旋转③对应点与旋转中心所连线段的夹角等于旋转角旋转作图定找旋连中心对称中心对称定义旋转180°性质对称中心是对称点连线段的中点(即两个对称点与对称中心三点共线中心对称图形性质经过对称中心的直线把原图形面积平分课堂小结
本文标题:新人教版九年级上册数学第二十三章-小结与复习
链接地址:https://www.777doc.com/doc-7148407 .html