您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 北京中考数学反比例函数综合题
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值;(3)设P点坐标为(t,t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.2.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a=,解得a=,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣x2+;b、当点A在x轴正半轴上,点B在y轴正半轴上,点D坐标为(3,4)时:不存在,c、当点A在x轴正半轴上,点B在y轴负半轴上,点C坐标为(3,4)时:不存在d、当点A在x轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y=x2+;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣x2+;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y=x2+;故二次函数的解析式分别为:y=x2+或y=﹣x2+或y=﹣x2+或y=x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.3.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.4.如图,一次函数y=kx+b的图象交反比例函数y=(x>0)的图象于A(4,-8)、B(m,-2)两点,交x轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?(3)以O、A、B、P为顶点作平行四边形,请直接写出点P的坐标.【答案】(1)解:∵反比例函数y=(x>0)的图象于A(4,-8),∴k=4×(-8)=-32.∵双曲线y=过点B(m,-2),∴m=16.由直线y=kx+b过点A,B得:,解得,,∴反比例函数关系式为,一次函数关系式为(2)解:观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值(3)解:∵O(0,0),A(4,-8)、B(16,-2),分三种情况:①若OB∥AP,OA∥BP,∵O(0,0),A(4,-8),∴由平移规律,点B(16,-2)向右平移4个单位,向下平移8个单位得到P点坐标为(20,-10);②若OP∥AB,OA∥BP,∵A(4,-8),B(16,-2),∴由平移规律,点O(0,0)向右平移12个单位,向上平移6个单位得到P点坐标为(12,6);③若OB∥AP,OP∥AB,∵B(16,-2),A(4,-8),∴由平移规律,点O(0,0)向左平移12个单位,向下平移6个单位得到P点坐标为(-12,-6);∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10)【解析】【分析】(1)将点A(4,-8),B(m,-2)代入反比例函数y=(x>0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x的范围;(3)根据平行四边形的性质,即可直接写出.5.如图,直线y=kx与双曲线=-交于A、B两点,点C为第三象限内一点.(1)若点A的坐标为(a,3),求a的值;(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.【答案】(1)解:把(a,3)代入=-,得,解得a=-2;(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线y=kx与双曲线=-交于A、B两点,∴OA=OB,当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO≌△OEC,又k=-,由y=-x和y=-解得,,所以A点坐标为(-2,3),由△ADO≌△OEC得,CE=OD=3,EO=DA=2,所以C(-3,-2);(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线y=kx与双曲线=-交于A、B两点,∴OA=OB,∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO∽△OEC,∴,∵∠ACO=∠ACB=30°,∠AOC=90°,∴,∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=-n,OD=-m,∴A(n,-m),代入y=-中,得mn=18.【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出,根据锐角三角函数的定义,及特殊锐角三角函数值得出,C的坐标为(m,n),故CE=-m,OE=-n,AD=-n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.6.如图,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.【答案】(1)解:∵反比例函数经过点D(﹣2,﹣1),∴把点D代入y=(m≠0),∴﹣1=,∴m=2,∴反比例函数的解析式为:y=,∵点A(1,a)在反比例函数上,∴把A代入y=,得到a==2,∴A(1,2),∵一次函数经过A(1,2)、D(﹣2,﹣1),∴把A、D代入y=kx+b(k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1(2)解:如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值(3)解:过点A作AE⊥x轴交x轴于点E,∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),∵点B在一次函数上,∴p=3+1=4,∵点C在反比例函数上,∴q=,∴S△ABC=BC•EN=×(4﹣)×(3﹣1)=.【解析】【分析】由反比例函数经过点D(-2,-1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.7.如图,已知直线与x、y轴交于M、N,若将N向右平移个单位后的N,,恰好落在反比例函数的图像上.(1)求k的值;(2)点P为双曲线上的一个动点,过点P作直
本文标题:北京中考数学反比例函数综合题
链接地址:https://www.777doc.com/doc-7154099 .html