您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 扩散双电层理论和Zeta-电势
164扩散双电层理论和Zeta电势胶体粒子的表面常因解离、吸附、极化、摩擦等原因而带电,分散介质则带反电荷,因此,在相界面上便形成了双电层。胶体的这种结构决定了它的电学性质,并对其稳定性起着十分重要的作用。本专题便来讨论胶体的双电层结构,并从中引出一个决定胶体电学性质和稳定性的重要指标——ς(Zeta)电势。1.双电层模型(1)Helmholtz模型1879年,Helmholtz在研究胶体在电场作用下运动时,最早提出了一个双电层模型。这个模型如同一个平板电容器,认为固体表面带有某种电荷,介质带有另一种电荷,两者平行,且相距很近,就像图64-1所示。图64-1Helmholtz双电层模型按照这个模型,若固体表面的电势为0ψ,正、负电荷的间距为δ,则双电层中的电势随间距直线下降,且表面电荷密度σ与电势0ψ的关系如下式表示δεψσ0=(64-1)式中ε为介质的介电常数。显然,这是一个初级双电层模型,它只考虑到带电固体表面对介质中反离子的静电作用,而忽视了反离子的热运动。虽然,它对胶体的早期研究起过一定的作用,但无法准确地描述胶体在电场作用下的运动。(2)Gouy(古依)—Chapman(恰普曼)模型由于Helmholtz模型的不足,1910和1913年,Gouy和Chapman先后作出改进,提出了一个扩散双电层模型。这个模型认为,介质中的反离子不仅受固体表面离子的静电吸引力,从而使其整齐地排列在表面附近,而且还要受热运动的影响,使其离开表面,无规则地分散在介质中。这便形成如图64-2所示的扩散双电层结构。2图64-2Gouy—Chapman扩散双电层模型他们还对模型作了定量的处理,提出了如下四点假设:①假设表面是一个无限大的平面,表面上电荷是均匀分布的。②扩散层中,正、负离子都可视为按Boltzmanm分布的点电荷。③介质是通过介电常数影响双电层的,且它的介电常数各处相同。④假设分散系统中只有一种对称的电解质,即正、负离子的电荷数均为z。于是,若表面电势为0ψ,相距x处的电势为ψ,便可按Boltzmanm分布定律,写出相距x处的正、负离子的数密度为⎟⎠⎞⎜⎝⎛−=+kTzennψexp0(64-2)⎟⎠⎞⎜⎝⎛=−kTzennψexp0(64-3)式中0n为0=ψ即距表面无限远处正或负离子的数密度。距表面x处的电荷密度当为()⎟⎠⎞⎜⎝⎛⋅−=⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−=−=−+kTzezenkTzekTzezennnzeψψψρsinh2expexp00(64-4)式中函数()yyy−−=ee21sinh,称为双曲正弦函数。根据静电学中的Poisson方程,电荷密度与电势间应服从如下关系ερψ−=∇2(64-5)式中2222222///zyx∂∂+∂∂+∂∂=∇为Laplace算符,ε为分散介质的介电常数。对于表面为平面的情况,222/x∂∂=∇因此⎟⎠⎞⎜⎝⎛⋅=−=∂∂kTzezenxψεερψsinh2022(64-6)3这是一个二阶微分方程,满足如下边界条件:当0=x时,0ψψ=;当∞=x时,0=ψ,且0/=∂∂xψ。略去推导的过程,式(64-6)解得结果为xκγγ−=e0(64-7)其中()()12/exp12/exp+−=kTzekTzeψψγ,()()12/exp12/exp000+−=kTzekTzeψψγ21222102222⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=kTLcezkTnezεεκ(64-8)式中c为电解质浓度,L为Avogadro常数。κ的倒数具有长度的量纲,它是一个重要的物理量,相当于专题57的离子氛厚度。式(64-7)在某些情况下可以简化。例如,在0ψ很小时,由于()kTze2/exp0ψkTze2/10ψ+≈,T/4ze00kΨ≈γ。同理,因ψψ0,kTze4/ψγ≈。故式(64-7)可简化为()xκψψ−=exp0(64-9)由此可见,κ的大小决定了电势ψ随距离x的衰减快慢。此外,由电中性条件,可得固体表面的电荷密度σ与扩散层中电荷密度ρ间的关系为∫∞−=0dxρσ(64-10)将式(64-5)代入式(64-10),可得0d022=∞=∂∂=⎟⎟⎠⎞⎜⎜⎝⎛∂∂=∫∞xxxxxψεψεσ00εκψψε=⎟⎠⎞⎜⎝⎛∂∂−==xx(64-11)这是因为边界条件∞=x时,0=∂∂xψ。又,式(64-9)对x求导,可得()00κψψ−=∂∂=xx。现若将式(64-11)与式(64-1)比较,便可知道1−κ相当于将扩散双电层等效于平板电容器时的板间距δ,故称其为扩散双电层的厚度。由式(64-8)可见,κ随电解质的浓度c和电荷数z的增大而增大,这就是说,扩散双电层的厚度1−κ随c和z的增大而变薄。图64-3(a)和(b)分别为按式(64-9)画出的不同电解质浓度和电荷数时的x~0ψψ曲线。它们表明了电解质的浓度和电荷数对双电层本性有很敏感的影响。4图64-3离子浓度(a)和电荷数(b)对x~0ψψ曲线的影响Gouy—Chapman模型的最主要贡献便是使双电层模型能够定量地描述,它所得到的上述规律对研究胶体的稳定性具有重要的意义。(3)Stern(斯特恩)模型但是,Gouy—Chapman模型至少有两点是不符合实际情况的:一是离子并非点电荷,它们有一定的大小;二是邻近表面的离子由于受固体表面的静电作用和vanderWaals引力,其分布不同于溶液的体相,而是被紧密地吸附在固体表面上。据此,1924年,Stern进一步改进了Gouy—Chapman扩散双电层模型,使它能够满意地用来描述胶体的电学性质和稳定性。Stern认为Gouy—Chapman模型中的扩散层应分成两个部分:第一部分包括吸附在表面的一层离子,形成一个内部紧密的双电层,称为Stern层;第二部分才是Gouy—Chapman扩散层。就像图64-4所示。两层中的离子是相互平衡的。在Stern层中,反离子的中心构图64-4Stern双电层模型成了一个面,称为Stern面,就如图64-4中虚线所示,在这个层内,电势的变化如同Helmholtz模型,由表面电势0ψ直线下降至δψ,δψ称为Stern电势。在扩散层内,电势则是由δψ下降至零,其变化规律服从Gouy—Chapman公式。因此,Stern双电层模型可视为由Helmholtz模型和Gouy—Chapman模型组合而成。c=5按照Stern模型,胶体离子在运动时,应该与Stern层不可分离,似乎切动面就是Stern面。但由于固体表面吸附的离子仍保持着溶剂化(至少在扩散层的一侧),故粒子运动除了与吸附离子一起外,还会带着一薄层溶剂化的液体,因此实际运动的切动面在Stern面更右侧一点,就如图64-4中的波纹线所示。这个切动面上的电势称为ς(Zeta)电势或动电势。它与Stern电势δψ非常接近,甚至数值上可以近似地视为等同。ς电势是胶体稳定性的一个重要指标,因为胶体的稳定是与粒子间的静电排斥力密切相关的。ς电势的降低会使静电排斥力减小,致使粒子间的vanderWaals吸引力占优,从而引起胶体的聚沉和破坏。故研究ς电势的变化规律是十分重要的。上面已述,Stern层与扩散层内的离子处在平衡之中,若分散介质中电解质的浓度和电荷数增大时,不仅扩散层的厚度会变薄,而且会有更多的反离子进入Stern层,从而使δψ和ς电势降低。如果外加电解质中含有高价或表面活性的反离子,那末,它们进入Stern层后,甚至有可能使δψ和ς电势变成负号,就如图64-5(a)所示。同理,若进入Stern层的是同号表面活性离子,那末,就如图64-5(b)所示,δψ和ς电势不仅与表面电势0ψ同号,而且大于0ψ。这些现象是前面两个双电层模型所无法解释的。(a)(b)图64-5Stern层有异号(a)或同号(b)表面活性离子进入后的δψ和ς电势(4)Grahame(格拉哈姆)模型1947年,DCGrahame进一步改进了Stern模型,他将Stern层细分成两层。对于带负电荷的固体表面,他认为首先化学吸附不水化的负离子○-和在固体表面定向排列的水分子○→,形成一个以内Helmholtz平面(IHP)表示的内层,紧接着吸附水化的正离子,形成以外Helmholtz平面(OHP)表示的外层。在外层的外面才是Gouy-Chapman扩散层,就像图6图64-6Grahame模型示意64-6示意。在这个双电层模型中,所有活性吸附离子都在IHP上。在IHP内和IHP与OHP之间电势随x的变化都是线形的。图中画出了电势随表面距离的变化曲线,其中δΨ即Stern电势。目前,普遍认同Stern模型和Grahame模型是较正确的双电层模型。2.电动现象与ς电势的测定鉴于ς电势是切动面上的电势,故设法使胶体离子与分散介质作相对运动,便能测定这个电势值。所谓电动现象就是指这种相对运动与电学性质间的关系。电动现象主要有下列四种:(1)电泳在外电场的作用下,胶体粒子向着与自己的电荷相反的电极方向迁移,而与分散介质作相对运动,这种现象称为电泳。(2)电渗在外电场的作用下,分散介质向着与自己的电荷相反的电极方向迁移,而分散相,诸如,沉积的固体颗粒、毛细管等固定不动,这种现象称为电渗。(3)流动电势在外力的作用下,使分散介质沿着分散相颗粒表面流动所产生的电势称为流动电势。这种现象正好与电渗相反。(4)沉降电势在重力或离心力的作用下,使带电的颗粒相对于分散介质沉降所产生的电势称为沉降电势。这种现象是电泳的逆过程。上述四种电动现象都可用来测定ς电势,但实用上,电泳用得最多,它已广泛地用于医学、环保、化工、生化等领域。下面,仅对电泳测定ς电势作概要的介绍:倘若胶体粒子带有的电量为q,在电场强度为E的外电场中迁移,则其所受的静电作用力为qE。当粒子在分散介质中运动时,它还要受摩擦力的作用。摩擦力的大小正比于粒子的运动速度υ,摩擦力的方向与运动方向相反,即摩擦力为υf−,其中f为阻力系数。对于球形粒子,按照Stokes定律rfηπ6=式中r为粒子半径,η为介质粘度。故摩擦力为υηrπ6−。当粒子在介质中匀速迁移时,应IHPOHP7满足下式υηrqEπ6=(64-12)又,根据静电学,对于球形粒子,可以近似认为切动面上的电量q与扩散层中的电量q−构成一个同心圆球电容器,ς就是这个电容器的电势,因此,()()rrqrqrqκεκεες+=+−=−1π4π4π41(64-13)式中ε为介质的介电常数。1−κ为扩散层的厚度。当粒子半径与扩散层厚度之比1rκ时,式(64-13)可表示为rqπες4=(64-14)将它代入式(64-12),可得ηεςυ5.1==Eu(64-15)式(64-15)称为ckeluH&&公式。式中u是粒子电泳的电迁移率。式(64-15)可用来测定和计算1.0rκ的球形粒子的ς电势。但是,随着rκ的增大,式(64-15)不再适用。Henry将外电场与粒子的双电层电场作简单的迭加,从而导出了一个复杂的公式,它相当于乘上一个校正系数()rfκ,使式(64-15)变为()rfuκηες5.1=(64-16)其中()rfκ是rκ的函数,它们间的关系如表64-1所示。由表64-1可见,当rκ很小时,()1→rfκ,此时,式(64-16)退变为式(64-15)。而当rκ很大时,()5.1→rfκ,此时,式(64-16)变为ηες=u(64-17)这个公式是由Smoluchowski首先导得,故称Smoluchowski公式。一般情况下,()rfκ则介表64-1校正系数()rfκ与rκ的关系rκ()rfκrκ()rfκ01.00051.16011.027101.23921.066251.37031.1011001.46041.133∞1.5008于5.11−之间。但应指出,除了上述两个极端情况外,式(64-16)和表64-1数据只适用于11−价电解质溶液内不导电的球形胶体粒子,且ς电势不大于mV25。对于更为一般的情况,还应考虑带电颗粒在电场中运动时,因与离子氛的对称性遭到破坏,所产生的额外的组织效应和松弛效应。参考资料[1].ShawDJ.Int
本文标题:扩散双电层理论和Zeta-电势
链接地址:https://www.777doc.com/doc-7175180 .html